Волатильность в классификации

Обложка

Цитировать

Аннотация

Целью данной работы является разработка новой трёхуровневой схемы автоматической классификации, основанной на введённом понятии - волатильности , как отдельных кластеров, так и классификации в целом. Волатильность представляет собой точно определяемую и эффективно вычисляемую величину, которая определяет стабильность, точность, надёжность некоторых подмножеств исходного множества вариантов - короче говоря, возможность (или невозможность) их выбора в качестве кластеров. Предложенный алгоритм находит кластеры с заданным максимальным уровнем волатильности, включая и традиционные кластеры, обладающие волатильностью, близкой к нулевой. Кластеры на фондовых рынках США, России и Швеции (за период кризиса 2008-2010 годов) и депутатские кластеры, определяемые голосованиями в 3-й Думе с 01.09.2001 по 31.01.2002 - периода, включающего в себя образование партии «Единая Россия» 01.12.2001, - были построены предложенным алгоритмом. При анализе кластеров, построенных по результатам голосований для каждого месяца в отдельности, оказалось, что волатильность кластеризации в сентябре и октябре равна 0, резко возрастает в ноябре и слегка убывает в декабре и ноябре. Другие методы (типа индексов согласованности между фракциями и др.) не показывают «политической бифуркации» в рассматриваемом периоде. Рассмотрены также разнообразные модельные примеры, для которых результаты классификации хорошо согласуются с геометрической интуицией.

Об авторах

Александр Анатольевич Рубчинский

Национальный исследовательский университет «Высшая школа экономики»

Email: arubchinsky@yahoo.com
Международная научно-учебная лаборатория анализа и выбора решений; Кафедра прикладной математики и информатики Международный университет природы, общества и человека «Дубна» ул. Университетская, д.19, Дубна, Московская область, Россия, 141980

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).