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Abstract. The paper studies a multiserver retrial queuing system with 𝜋-defeat as a mathematical model of cloud
services. The arrival processes of “positive” calls are Poisson. The system has a finite number of servers and
the service time for calls at the servers is exponentially distributed. When all servers are busy, calls entering
the system transfer to an orbit, where they experience a random delay. After the delay, calls from the orbit
attempt to access the service unit according to a multiple access policy. The system also receives a stream of
negative calls. Negative calls do not require the service. An negative call “deletes” a random number of calls
is the service unit. For the considered model, the Kolmogorov equations are written in the steady state. The
method of asymptotic analysis under a heavy load condition is applied for deriving the stationary probability
distribution of the number of calls in the orbit. The results of the numerical analysis are presented.
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1. Introduction
Cloud technologies represent amodel for providing computing resources ondemandover the Internet,
where infrastructure, software, and data are located on remote servers (in the “cloud”) rather than on
the user’s local devices. Users access these resources via the Internet using various devices, such as
computers, smartphones, and tablets, and pay only for the resources actually consumed, making
cloud technologies a flexible, scalable, and cost-effective solution.
Cloud technologies encompass a wide range of services delivered over the internet, including

Infrastructure as a Service (IaaS) from AWS, Azure, and Google Cloud; Platform as a Service (PaaS)
such as Heroku and App Engine; Software as a Service (SaaS) like Microsoft 365 and Salesforce;
Functions as a Service (FaaS) such as AWS Lambda; as well as Database as a Service (DBaaS) and
cloud storage solutions such as Amazon S3, Azure Blob Storage, and Google Cloud Storage, providing
users with flexible, scalable, and cost-effective computing resources [1].
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Cloud technologies, as and development of new telecommunication networks, remains a priority
for science and technology, reflected in diverse approaches ranging from analytical methods [2],the
development of architectures for managing network slicing [3] and the performance modeling of
mmWave networks [4], requiring the advancement of analytical tools.
Mathematical modeling is critically important for the optimization of costs, the enhancement

of performance, and the assurance of reliability by predicting resource consumption, identifying
bottlenecks, and planning for scaling. It is particularly important that modeling allows for the
consideration of potential negative factors, such as software failures, cyberattacks, and accidents,
in order to develop effective protection and redundancy strategies, guaranteeing the uninterrupted
operation of the system.
In this paper, we present a mathematical model of a cloud in the form of a multi-server retrial

queueing system (RQ system) with negative calls.
Retrial queueing systems are mathematical models of queueing theory widely used to analyze and

optimize various telecommunications systems, mobile communication networks, and call centers [5–
7]. Themain feature of suchmodels is the presence of repeated calls to the server after an unsuccessful
attempt to receive the service. There is not a queue in the system, unserved calls go to an orbit (some
virtual place), where they perform a random delay. There is a random access protocol for all calls in
an orbit.

J. Artalejo and A. Gomez-Corral [5], G. Falin and J. Templeton [6] offered comprehensive treatments
in retrial queueing systems, establishing the groundwork for analyzing queues with repeated
calls. T. Phung-Duc [7] provides a survey of retrial queueing models, highlighting their theoretical
developments and diverse applications.
The concept of negative calls was pioneered by E. Gelenbe [8]. He introduced negative signals

that can remove calls from the system, providing a framework for modeling complex interactions in
various systems. This concept was further explored in [9, 10], solidifying themathematical foundation
for this area, such models began to be called as G-networks and G-systems. Do [11] offers a valuable
bibliography on G-networks, negative calls, and their applications. M. Caglayan [12] highlighted the
applications of G-networks to machine learning and energy packet networks.
Later research has expanded upon these foundations, considering various aspects of G-networks

and retrial queues with negative calls. P. Bocharov and V. Vishnevsky [13] discussed the development
of the theory of multiplicative networks in the context of G-networks. Y. Shin [14] investigated
multiserver retrial queues with both negative calls and disasters, while R. Razumchik [15] studied
queueing systemswith negative arrivals, a “bunker” for displaced calls, and varying service intensities.
M.Matalytski andV. Naumenko [16] analyzed queueing networks with boundedwaiting times for both
positive and negative calls under non-stationary conditions. Further contributions to this field include
research on related queuing models. Liu et al. [17] explore a multiserver two-way communication
retrial queue subject to disasters and synchronous working vacations, offering insights into the
impact of disruptive events and service strategies on system performance. A. Melikov [18] considers
inventory queuing systems with negative arrivals. E. Lisovskaya et al. [19] investigate a resource
retrial queue with two orbits and negative customers. These works demonstrate a great interest and
expansion of the theoretical understanding and practical applications of G-systems with negative
calls.
In this paper, we consider a multiserver retrial queuing system with 𝜋-defeat as a model for cloud

services. In terms of queueing theory, data flow in cloud services is described as an arrival process
in multiserver system, which defines a cloud node. The orbit is the storage location for so-called
“sleeping” requests, negative arrivals define hacker attacks.
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Figure 1. Multiserver retrial queueing systems system with 𝜋-defeat

The article is structured as follows. Section 2 describes a multiserver queueing system with retrials
and catastrophes in the service unit, formulates the problem statement, and writes down the system
of Kolmogorov equations. Section 3 is devoted to the asymptotic analysis method under heavy load
conditions, which is applied to solve the system of equations. In Section 4, we demonstrate some
numerical experiments that show the accuracy of the asymptotic results. Section 5 is devoted to some
concluding remarks.

2. Mathematical model
In this paper, we consider a multiserver retrial queueing systems (Figure 1). The arrival process is
Poisson with parameter 𝜆, we will call these calls as “positive.” Positive calls arrive into a service
unit (which has 𝐾 servers), until all servers become busy. The service time of each call is distributed
exponentially with parameter 𝜇. If all servers are busy, an arrival call goes to an orbit, where it
performs a random delay. The delay duration has an exponential distribution with parameter 𝜎.
From the orbit, the call again turns to the service unit. If there is a free server, the call begins its
service; otherwise, it returns to the orbit to make a next attempt. We suppose that there is a multiple
access policy in the orbit.

In addition, negative calls arrive into the systemaccording to Poisson arrival processwith parameter
𝛾. A negative call does not need the service; it negatively affects the system. Here, we consider
a general model with negative arrivals – 𝜋-defeat. It means that a negative call deletes 𝑘 servicing
calls with probability 𝜋𝑘, where 𝑘 = 1, 𝐾. For the probability distribution of the number of deleted
calls, the normalization condition holds∑𝐾

𝑘=1 𝜋𝑘 = 1.
Special cases of the presented model are considered in the previous studies, such as RQ with

disasters in the service unit (𝜋𝑘 = 0 for 𝑘 = 1, 𝐾 − 1 and 𝜋𝐾 = 1) [20], the model with a single
destruction ( 𝜋1 = 1 and 𝜋𝑘 = 0 for 𝑘 = 2, 𝐾) [21].
Denote a random process of the number of calls in the orbit by 𝑖(𝑡). The problem of obtaining the

stationary probability distribution of the number of calls in the orbit is posed.
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Due to 𝑖(𝑡) is not Markov process, we introduce process 𝑘(𝑡) determined states of the service unit
as follows:

𝑘(𝑡) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

0, if all servers are free,

1, if one server is busy,

...

𝑘, if 𝑘 servers are busy,

...

𝐾, if all servers are busy.

Obviously, process {𝑘(𝑡), 𝑖(𝑡)} is a continuous-time Markov chain. Let 𝑃{𝑘(𝑡) = 𝑘, 𝑖(𝑡) = 𝑖} = 𝑃(𝑘, 𝑖)
be the stationary probabilities that the service unit is in state 𝑘 and there are 𝑖 calls in the orbit. The
system of Kolmogorov equations in the steady state has the following form

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−𝑃(0, 𝑖)(𝜆 + 𝑖𝜎) + 𝑃(1, 𝑖)𝜇 +
𝐾
∑
𝑘=1

𝑃(𝑘, 𝑖)𝛾
𝐾
∑
𝑣=𝑘

𝜋𝑣 = 0,

− 𝑃(𝑘, 𝑖)(𝜆 + 𝑘𝜇 + 𝑖𝜎 + 𝛾) + 𝑃(𝑘 − 1, 𝑖)𝜆 + 𝑃(𝑘 − 1, 𝑖 + 1)𝜎(𝑖 + 1) +

+ 𝑃(𝑘 + 1, 𝑖)(𝑘 + 1)𝜇
𝐾
∑

𝑣=𝑘+1
𝑃(𝑣, 𝑖)𝛾𝜋𝑣−𝑘 = 0, with 1 ⩽ 𝑘 ⩽ 𝐾 − 1,

−𝑃(𝐾, 𝑖)(𝜆 + 𝐾𝜇 + 𝛾) + 𝑃(𝐾 − 1, 𝑖)𝜆 + 𝑃(𝐾, 𝑖 − 1)𝜆 + 𝑃(𝐾 − 1, 𝑖 + 1)𝜎(𝑖 + 1) = 0.

(1)

In addition, the normalization condition must be taken into account:

𝐾
∑
𝑘=0

∞
∑
𝑖=0

𝑃(𝑘, 𝑖) = 1.

Let us introduce the partial characteristic functions:

𝐻𝑘(𝑢) =
∞
∑
𝑖=0

𝑒𝑗ᵆ𝑖𝑃(𝑘, 𝑖).

Then we rewrite System (1) as follows

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

−𝐻0(𝑢)𝜆 + 𝑗𝜎 𝜕𝐻0(ᵆ)
𝜕ᵆ

+ 𝐻1(𝑢)𝜇 + 𝛾
𝐾
∑
𝑘=1

𝐻𝑘(𝑢)
𝐾
∑
𝑣=𝑘

𝜋𝑣 = 0,

− 𝐻𝑘(𝑢)(𝜆 + 𝑘𝜇 + 𝛾) + 𝑗𝜎
𝜕𝐻𝑘(𝑢)
𝜕𝑢 − 𝑗𝜎𝑒−𝑗ᵆ

𝜕𝐻𝑘−1(𝑢)
𝜕𝑢 + +𝐻𝑘−1(𝑢)𝜆 +

+ 𝐻𝑘+1(𝑢)(𝑘 + 1)𝜇 + 𝛾
𝐾
∑

𝑣=𝑘+1
𝐻𝑣(𝑢)𝜋𝑣−𝑘 = 0, with 1 ⩽ 𝑘 ⩽ 𝐾 − 1,

−𝐻𝐾(𝑢)(𝜆(1 − 𝑒𝑗ᵆ) + 𝐾𝜇 + 𝛾) + 𝐻𝐾−1(𝑢)𝜆 − 𝑗𝜎𝑒−𝑗ᵆ 𝜕𝐻𝐾−1(ᵆ)
𝜕ᵆ

= 0.

(2)

Summing up all equations of System (2), we obtain an additional equation

𝑗𝜎
𝐾−1
∑
𝑘=0

𝜕𝐻𝑘(𝑢)
𝜕𝑢 + 𝐻𝐾(𝑢)𝜆𝑒𝑗ᵆ = 0. (3)
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3. Asymptotic analysis
System (2)-(3) is a differential equations system of 𝐾 functions, thus it is necessary to apply specific
methods for its solving. We propose the method of the asymptotic analysis under a heavy load
condition in this paper.
Let us denote the load parameter

𝜌 = 𝜆
𝐾𝜇 .

The steady state condition is written 𝜌 < 𝑆, where 𝑆 is an upper limit value of the load parameter,
such as the system being unstable for 𝜌 ≥ 𝑆. Sometimes, 𝑆 is called a throughput parameter. Note
that an expression for 𝑆 is unknown for the considered model, but further we will derive it.
The asymptotic condition of a heavy load is described as 𝜌 → 𝑆 or 𝜀 → 0, where 𝜀 = 𝑆 − 𝜌.
The method of the asymptotic analysis consists of several steps. First of all, we introduce the

asymptotic notations:

𝜆 = (𝑆 − 𝜀)𝐾𝜇, 𝑢 = 𝜀𝑤, 𝐻𝑘(𝑢) = 𝜀𝐹𝑘(𝑤, 𝜀), 𝐻𝐾(𝑢) = 𝐹𝐾(𝑤, 𝜀).

From system (2)–(3), the following system of the asymptotic equation is obtained

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−𝐹0(𝑤, 𝜀)𝜀(𝑆 − 𝜀)𝐾𝜇 + 𝑗𝜎 𝜕𝐹0(𝑤,𝜀)
𝜕𝑤

+ 𝐹1(𝑤, 𝜀)𝜀𝜇 + 𝐹𝐾(𝑤, 𝜀)𝛾𝜋𝐾 + 𝛾
𝐾−1
∑
𝑘=1

𝐹𝑘(𝑤, 𝜀)𝜀
𝐾
∑
𝑣=𝑘

𝜋𝑣 = 0,

− 𝐹𝑘(𝑤, 𝜀)𝜀((𝑆 − 𝜀)𝐾𝜇 + 𝑘𝜇 + 𝛾) + 𝑗𝜎
𝜕𝐹𝑘(𝑤, 𝜀)

𝜕𝑤 + 𝐹𝐾(𝑤, 𝜀)𝛾𝜋𝐾−𝑘 − 𝑗𝜎𝑒−𝑗𝜀𝑤
𝜕𝐹𝑘−1(𝑤, 𝜀)

𝜕𝑤 +

+ 𝐹𝑘−1(𝑤, 𝜀)𝜀(𝑆 − 𝜀)𝐾𝜇 + 𝐹𝑘+1(𝑤, 𝜀)𝜀(𝑘 + 1)𝜇 + 𝛾
𝐾−1
∑

𝑣=𝑘+1
𝐹𝑣(𝑤, 𝜀)𝜀𝜋𝑣−𝑘 = 0, 1 ⩽ 𝑘 ⩽ 𝐾 − 2,

− 𝐹𝐾−1(𝑤, 𝜀)𝜀((𝑆 − 𝜀)𝐾𝜇 + (𝐾 − 1)𝜇 + 𝛾) + 𝑗𝜎𝜕𝐹𝐾−1(𝑤, 𝜀)𝜕𝑤 − 𝑗𝜎𝑒−𝑗𝜀𝑤 𝜕𝐹𝐾−2(𝑤, 𝜀)𝜕𝑤 +

+ 𝐹𝐾−2(𝑤, 𝜀)𝜀(𝑆 − 𝜀)𝐾𝜇 + 𝐹𝐾(𝑤, 𝜀)𝐾𝜇 + 𝐹𝐾(𝑤, 𝜀)𝛾𝜋1 = 0, 𝑘 = 𝐾 − 1,

−𝐹𝐾(𝑤, 𝜀)((𝑆 − 𝜀)𝐾𝜇(1 − 𝑒𝑗𝜀𝑤) + 𝐾𝜇 + 𝛾) + 𝐹𝐾−1(𝑤, 𝜀)(𝑆 − 𝜀)𝐾𝜇𝜀 − 𝑗𝜎𝑒−𝑗𝜀𝑤 𝜕𝐹𝐾−1(𝑤,𝜀)
𝜕𝑤

= 0,

(4)

and

𝑗𝜎
𝐾−1
∑
𝑘=0

𝜕𝐹𝑘(𝑤, 𝜀)
𝜕𝑤 + 𝐹𝐾(𝑤, 𝜀)(𝑆 − 𝜀)𝐾𝜇𝑒𝑗𝜀𝑤 = 0. (5)

Under 𝜀 → 0 in system (4)–(5), we have

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝑗𝜎𝐹′0 (𝑤) + 𝐹𝐾(𝑤)𝛾𝜋𝐾 = 0,

𝑗𝜎𝐹′𝑘(𝑤) − 𝑗𝜎𝐹′𝑘−1(𝑤) + 𝐹𝐾(𝑤)𝛾𝜋𝐾−𝑘 = 0, 1 ⩽ 𝑘 ⩽ 𝐾 − 2,

𝑗𝜎𝐹′𝐾−1(𝑤) − 𝑗𝜎𝐹′𝐾−2(𝑤) + 𝐹𝐾(𝑤)𝐾𝜇 + 𝐹𝐾(𝑤)𝛾𝜋1 = 0,

−𝑗𝜎𝐹′𝐾−1(𝑤) − 𝐹𝐾(𝑤)(𝐾𝜇 + 𝛾) = 0,

(6)

and

𝑗𝜎
𝐾−1
∑
𝑘=0

𝜕𝐹𝑘(𝑤)
𝜕𝑤 + 𝐹𝐾(𝑤)𝑆𝐾𝜇 = 0. (7)
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From system (6), it can be obtained the following expressions:

⎧
⎪

⎨
⎪
⎩

𝑗𝜎𝐹′0 (𝑤) = −𝐹𝐾(𝑤)𝛾𝜋𝐾,

𝑗𝜎𝐹′𝑘(𝑤) = −𝐹𝐾(𝑤)𝛾(𝜋𝐾 + 𝜋𝐾−1 + ... + 𝜋𝐾−𝑘) = 0, 1 ⩽ 𝑘 ⩽ 𝐾 − 2,

𝑗𝜎𝐹′𝐾−1(𝑤) = −𝐹𝐾(𝑤)(𝐾𝜇 + 𝛾) = 0.

(8)

From (8), let us express:

𝑗𝜎
𝐾−1
∑
𝑘=0

𝜕𝐹𝑘(𝑤)
𝜕𝑤 = −𝐹𝐾(𝑤)𝐾𝜇 − 𝐹𝐾(𝑤)𝛾(𝐾𝜋𝐾 + (𝐾 − 1)𝜋𝐾−1 + ... + 2𝜋2 + 𝜋1). (9)

Substituting (9) into (7), we obtain:

𝑆 = 𝑏𝛾
𝐾𝜇 + 1,

where 𝑏 =
𝐾
∑
𝑘=1

𝑘𝜋𝑘 is a mean of the number of servicing calls deleted by negative arrivals.

In the next step of the asymptotic analysis, the following expansions for functions 𝐹𝑘(𝑤, 𝜀) will be
used:

𝐹𝑘(𝑤, 𝜀) = 𝐹𝑘(𝑤) + 𝜀𝑓𝑘(𝑤) + 𝑂(𝜀2). (10)

Substituting (10) into system (4)–(5) and taking into account (6)–(7), we derive

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

− 𝑆𝐾𝜇𝜀𝐹0(𝑤) + 𝑗𝜎𝐹′0 (𝑤) + 𝑗𝜎𝜀𝑓′0(𝑤) + 𝜇𝜀𝐹1(𝑤)+

+ 𝛾
𝐾−1
∑
𝑘=1

𝜀𝐹𝑘(𝑤)
𝐾−1
∑
𝑣=𝑘

𝜋𝑣 + 𝛾𝜋𝐾𝐹𝐾(𝑤) + 𝛾𝜀𝜋𝐾𝐹𝐾(𝑤) = 0,

− (𝑘𝜇 + 𝛾)𝜀𝐹𝑘(𝑤) − 𝑆𝐾𝜇𝜀𝐹𝑘(𝑤) + 𝑗𝜎𝐹′𝑘(𝑤) + 𝑗𝜎𝜀𝑓′𝑘(𝑤)−

− 𝑗𝜎𝐹′𝑘−1(𝑤) + 𝑗𝜎(𝑗𝜀𝑤)𝐹′𝑘−1(𝑤) − 𝑗𝜎𝜀𝑓′𝑘−1 + 𝑆𝐾𝜇𝜀𝐹𝑘−1(𝑤)+

+ (𝑘 + 1)𝜇𝜀𝐹𝑘+1(𝑤) + 𝛾
𝐾−1
∑

𝑣=𝑘+1
𝜀𝜋𝑣−𝑘𝐹𝑣(𝑤) + 𝛾𝜀𝜋𝐾−𝑘𝑓𝐾(𝑤) + 𝛾𝜋𝐾−𝑘𝐹𝐾(𝑤) = 0, 𝑘 = 1...𝐾 − 2,

− 𝑆𝐾𝜇𝜀𝐹𝐾−1(𝑤) − ((𝐾 − 1)𝜇 + 𝛾)𝜀𝐹𝐾−1(𝑤) + 𝑗𝜎𝐹′𝐾−1(𝑤)+

+ 𝑗𝜎𝜀𝑓′𝐾−1(𝑤) − 𝑗𝜎𝐹′𝐾−2(𝑤) + 𝑗𝜎(𝑗𝜀𝑤)𝐹′𝐾−2(𝑤) − 𝑗𝜎𝜀𝑓′𝐾−2+
+ 𝑆𝐾𝜇𝜀𝐹𝐾−2(𝑤) + 𝐾𝜇𝐹𝐾(𝑤) + 𝐾𝜇𝜀𝑓𝐾(𝑤) + 𝛾𝜋1𝐹𝐾(𝑤) + 𝛾𝜀𝜋1𝑓𝐾(𝑤) = 0, 𝑘 = 𝐾 − 1,

− 𝑆𝐾𝜇(𝑗𝜀𝑤)𝐹𝐾(𝑤) − (𝐾𝜇 + 𝛾)𝐹𝐾(𝑤) − (𝐾𝜇 + 𝛾)𝜀𝑓𝐾(𝑤)+

+ 𝑆𝐾𝜇𝜀𝐹𝐾−1(𝑤) − 𝑗𝜎(1 − 𝑗𝜀𝑤)𝐹′𝐾−1(𝑤) + 𝑗𝜎(𝑗𝜀𝑤)𝐹′𝐾−1(𝑤) − 𝑗𝜎𝜀𝑓′𝐾−1(𝑤) = 0,

(11)

and

𝑗𝜎
𝐾−1
∑
𝑘=0

𝜕𝑓𝑘(𝑤)
𝜕𝑤 + 𝑆𝐾𝜇(𝑗𝑤)𝐹𝐾(𝑤) − 𝐾𝜇𝐹𝐾(𝑤) + 𝑆𝐾𝜇𝑓𝐾(𝑤) = 0. (12)
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Under limit 𝜀 → 0, system (11)–(12) is written as

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−𝑆𝐾𝜇𝐹0(𝑤) + 𝑗𝜎𝑓′0(𝑤) + 𝜇𝐹1(𝑤) + 𝛾
𝐾−1
∑
𝑘=1

𝐹𝑘(𝑤)
𝐾
∑
𝑣=𝑘

𝜋𝑣 + 𝛾𝜋𝐾𝑓𝐾(𝑤) = 0,

− (𝑆𝐾𝜇 + 𝑘𝜇 + 𝛾)𝐹𝑘(𝑤) + 𝑗𝜎𝑓′𝑘(𝑤) + 𝑗𝜎𝑗𝑤𝐹′𝑘−1(𝑤) − 𝑗𝜎𝑓′𝑘−1(𝑤) + 𝑆𝐾𝜇𝐹𝑘−1(𝑤) +

+ (𝑘 + 1)𝜇𝐹𝑘+1(𝑤) + 𝛾
𝐾−1
∑

𝑣=𝑘+1
𝜋𝑣−𝑘𝐹𝑣(𝑤) + 𝛾𝜋𝐾−𝑘𝑓𝐾(𝑤) = 0, 𝑘 = 1...𝐾 − 2,

−(𝑆𝐾𝜇 + (𝐾 − 1)𝜇 + 𝛾)𝐹𝐾−1(𝑤) + 𝑗𝜎𝑓′𝐾−1(𝑤) + 𝑗𝜎𝑗𝑤𝐹′𝐾−2(𝑤) −

− 𝑗𝜎𝑓′𝐾−2(𝑤) + 𝑆𝐾𝜇𝐹𝐾−2(𝑤) + 𝐾𝜇𝑓𝐾(𝑤) + 𝛾𝜋1𝑓𝐾(𝑤) = 0,

−𝑗𝑤𝑆𝐾𝜇𝐹𝐾(𝑤) − (𝐾𝜇 + 𝛾)𝑓𝐾(𝑤) + 𝑆𝐾𝜇𝐹𝐾−1(𝑤) + 𝑗𝜎𝑗𝑤𝐹′𝐾−1(𝑤) − 𝑗𝜎𝑓′𝐾−1(𝑤) = 0,

(13)

and

𝑗𝜎
𝐾−1
∑
𝑘=0

𝜕𝑓𝑘(𝑤)
𝜕𝑤 + 𝐾𝜇(𝑆𝑗𝑤 − 1)𝐹𝐾(𝑤) + 𝑆𝐾𝜇𝑓𝐾(𝑤) = 0. (14)

Let us express 𝑗𝜎𝑓′0(𝑤) from the first equation of System (13):

𝑗𝜎𝑓′0(𝑤) = 𝑆𝐾𝜇𝐹0(𝑤) − 𝜇𝐹1(𝑤) − 𝛾
𝐾−1
∑
𝑘=1

𝐹𝑘(𝑤)
𝐾
∑
𝑣=𝑘

𝜋𝑣 − 𝛾𝜋𝐾𝑓𝐾(𝑤).

From system (13), the following expressions can be derived

𝑗𝜎𝑓′𝑘(𝑤) = 𝑆𝐾𝜇𝐹𝑘(𝑤) − 𝑗𝜎𝑗𝑤
𝑘−1
∑
𝑣=0

𝐹′𝑣(𝑤) − ((𝑘 + 1)𝜇 + 𝛾)𝐹𝑘+1(𝑤) −

− 𝛾
𝐾−1
∑

𝑚=𝑘+2
𝐹𝑚(𝑤)

𝐾
∑

𝑣=𝑚−𝑘
𝜋𝑣 − 𝛾𝑓𝐾(𝑤)

𝐾
∑

𝑣=𝐾−𝑘
𝜋𝑣 for 𝑘 = 1, 𝐾 − 2, (15)

and

𝑗𝜎𝑓′𝐾−1(𝑤) = 𝑆𝐾𝜇𝐹𝐾−1(𝑤) − 𝑗𝜎𝑗𝑤
𝐾−2
∑
𝑣=0

𝐹′𝑣(𝑤) − (𝐾𝜇 + 𝛾)𝑓𝐾(𝑤). (16)

Let us denote 𝑔𝑘 =
𝐾
∑
𝑣=𝑘

𝜋𝑣. Taking into account (15)–(16), we derive

𝑗𝜎
𝐾−1
∑
𝑘=0

𝑓′𝑘(𝑤) = −𝛾
𝐾−1
∑
𝑘=2

𝐹𝑘(𝑤)(𝑔𝑘 + 1) +
𝐾−1
∑
𝑘=0

𝑆𝐾𝜇𝐹𝑘(𝑤) −
𝐾−1
∑
𝑘=1

𝑘𝜇𝐹𝑘(𝑤) −

− 𝛾𝐹1(𝑤) − 𝛾
𝐾−3
∑
𝑘=1

𝐾−1
∑

𝑚=𝑘+2
𝐹𝑚(𝑤)𝑔𝑚−𝑘 − 𝑗𝜎𝑗𝑤

𝐾−1
∑
𝑘=1

𝑘−1
∑
𝑣=0

𝐹′𝑣(𝑤) − 𝑓𝐾(𝑤)𝑆𝐾𝜇.

The last step is substituting all derived expression into Equation (14):

− 𝛾
𝐾−1
∑
𝑘=2

𝐹𝑘(𝑤)(𝑔𝑘 + 1) + 𝑆𝐾𝜇
𝐾−1
∑
𝑘=0

𝐹𝑘(𝑤) − 𝜇
𝐾−1
∑
𝑘=1

𝑘𝐹𝑘(𝑤) − 𝛾𝐹1(𝑤) −

− 𝛾
𝐾−3
∑
𝑘=1

𝐾−1
∑

𝑚=𝑘+2
𝐹𝑚(𝑤)𝑔𝑚−𝑘 − 𝑗𝑤𝛾𝐹𝐾(𝑤)

𝐾
∑
𝑣=2

(𝑣 − 1)𝑔𝑣 + 𝐾𝜇(𝑆𝑗𝑤 − 1)𝐹𝐾(𝑤) = 0.
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Substituting (8), we obtain

𝛾
𝑗𝜎 (𝐾𝜇+𝛾)𝐹𝐾(𝑤)(𝑔𝐾−1+1)+

𝛾
𝑗𝜎

𝐾−2
∑
𝑘=2

𝐹𝐾(𝑤)𝑔𝐾−𝑘(𝑔𝑘+1)−
𝑆𝐾𝜇
𝑗𝜎 (𝐾𝜇+𝛾)𝐹𝐾(𝑤)−

𝑆𝐾𝜇
𝑗𝜎

𝐾−2
∑
𝑘=0

𝛾𝐹𝐾(𝑤)𝑔𝐾−𝑘+

+
𝜇(𝐾 − 1)

𝑗𝜎 (𝐾𝜇 + 𝛾)𝐹𝐾(𝑤) +
𝜇
𝑗𝜎

𝐾−2
∑
𝑘=1

𝑘𝛾𝐹𝐾(𝑤)𝑔𝐾−𝑘 −
𝛾
𝑗𝜎𝛾𝐹𝐾(𝑤)𝑔𝐾−1 −

− 𝛾
𝐾−3
∑
𝑘=1

( −
(𝐾𝜇 + 𝛾)

𝑗𝜎 𝐹𝐾(𝑤)𝑔𝐾−1−𝑘 −
𝛾
𝑗𝜎

𝐾−2
∑

𝑚=𝑘+2
𝐹𝐾(𝑤)𝑔𝐾−𝑚𝑔𝑚−𝑘) +

+ 𝑗𝛾𝐹𝐾(𝑤)
𝐾
∑
𝑣=2

(𝑣 − 1)𝑔𝑣 + 𝑗𝑤𝛾𝐹′𝐾(𝑤)
𝐾
∑
𝑣=2

(𝑣 − 1)𝑔𝑣 + 𝐾𝑆𝜇𝑗𝐹𝐾(𝑤) + 𝐾𝜇(𝑆𝑗𝑤 − 1)𝐹′𝐾(𝑤) = 0.

After some mathematical transformations, we obtain a differential equation for function 𝐹𝐾(𝑤) of
the following form:

𝐹𝐾(𝑤)𝛼 + 𝑗𝜎(1 − 𝑗𝑤𝛽)𝐹′(𝑤) = 0, (17)

where
𝛼 = 𝜎𝛽 + 𝜇 + 𝛾(𝑏 + (𝐾 − 1)2

𝐾 + 2𝜋𝐾−1 + 3𝜋𝐾 +
𝑑
𝐾) −

𝛾
𝐾𝜇(𝑓2 + 𝑏+

+𝜋𝐾−1 + 2𝜋𝐾 + 1) + 𝛾2

𝐾𝜇(𝐾(𝑏 − 1) + 3𝜋𝐾−1 + 4𝜋𝐾 + 2 − 𝐶),

𝛽 = 𝑆 + 𝛾
𝐾𝜇

𝐾
∑
𝑘=2

(𝑘 − 1)𝑔𝑘, 𝑓𝑛 =
𝐾−2
∑
𝑘=𝑛

𝑔𝐾−𝑘𝑔𝑘, 𝑔𝑘 =
𝐾
∑
𝑣=𝑘

𝜋𝑣,

𝑑 =
𝐾−2
∑
𝑘=0

𝑘𝑔𝐾−𝑘, 𝑐𝑘+2 =
𝐾−2
∑

𝑚=𝑘+2
𝑔𝐾−𝑚

𝑚−1
∑

𝑛=𝑚−𝑘
𝜋𝑛, 𝐶 =

𝐾−3
∑
𝑘=1

(𝑓𝑘+2 + 𝑐𝑘+2).

(18)

The solution to the equation (17) is:

𝐹𝐾(𝑤) = (1 − 𝑗𝑤𝛽)
− 𝛼

𝜍
.

Turning up the asymptotic notation, the characteristic function of the number of calls in the orbit

𝐻(𝑢) = 𝐹𝐾(
𝑢
𝜀 ) + 𝑂(𝜀).

In this way, we finally conclude that the asymptotic characteristic function of the number of calls
in the orbit of the considered model under a heavy load condition

ℎ(𝑢) = 𝐹𝐾(
𝑢

𝑆 − 𝜌) = (1 −
𝑗𝑢𝛽
𝑆 − 𝜌)

− 𝛼
𝜍
, (19)

has the form of the characteristic function of the gamma distribution with parameters 𝛼 and 𝛽 defined
by (18).

3.1. Special cases

Asmentioned above, the studied retrial queueing systemwith𝜋-defeat generalizesmodels considered
previously in [20, 21]. So we can compare the asymptotic results in two special cases:
1. Model with single destruction: 𝜋1 = 1 and 𝜋𝑘 = 0 for 𝑘 = 2, 𝐾.
2. Model with disasters in the service unit: 𝜋𝐾 = 1 and 𝜋𝑘 = 0 for 𝑘 = 1, 𝐾 − 1.
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Figure 2. Exact and asymptotic probability distributions for 𝜌 = 0.99

By substituting the corresponding values of 𝜋𝑘 into (19) the following corollaries can be formulated
(which coincide with [20] and [21]).

Corollary 1. The asymptotic characteristic function of the probability distribution of the number
of calls in orbit in RQ M/M/K with single destruction of negative calls has the form of the gamma
distribution function (19) with parameters 𝛼 = 𝜇 + 𝛾 + 𝜎, 𝛽 = 1, 𝑆 = 1 + 𝛾

𝐾𝜇 .

Corollary 2.It can be derived from (19) that the asymptotic characteristic function of the probability
distribution of the number of calls in orbit in RQ M/M/K with disasters in the service unit has the
form of the gamma distribution function (19) with parameters 𝛽 = 1 + 𝛾(𝐾+1)

2𝜇
, 𝑆 = 1 + 𝛾

𝜇
,

𝛼 = 𝜎𝛽 + 𝜇 + 𝛾(2𝐾 − 1) − 𝛾(𝐾−1)(2+𝛾(𝐾−2))
2𝐾

+ 𝛾2(𝐾2+𝐾−4)
2𝐾𝜇

.

Note that we have proved that the asymptotic distribution under a heavy load has a gamma form for
all cases.

4. Numerical analysis
To analyze the range of applicability of the proposed asymptotic method, we numerically compare
asymptotic distribution 𝑃𝑍(𝑖) and exact distribution 𝑃(𝑖) obtained using a numerical algorithm for
various values of the system parameters.

As a measure of the asymptotic method accuracy, we use the Kolmogorov distance:

△=
||||

𝑖
∑
𝑛=0

𝑃𝑍(𝑛) − 𝑃(𝑛))
||||
.

As an example, we present the calculation for the following values of system parameters:

𝜌 = 0.99 ⋅ 𝑆, 𝜇 = 1, 𝛾 = 0.01, 𝜎 = 5, 𝐾 = 5, 𝜋 = [0.247 0.603 0.101 0.045 0.004]

From Figure 4, we can see that the exact distribution has the value of the zero state probability
(𝑃{𝑖(𝑡) = 0}) much greater than others 𝑃(𝑖). This is the main feature of the model for quite large values
of 𝛾 (negative calls arrive more frequently and more calls are deleted).
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Table 1
Kolmogorov distances for various values of the parameter 𝜌

𝛾 = 0.01 𝛾 = 0.001 𝛾 = 0.0001

𝜌 = 0.99 ⋅ 𝑆 0.120 0.026 0.016

𝜌 = 0.98 ⋅ 𝑆 0.120 0.041 0.034

𝜌 = 0.97 ⋅ 𝑆 0.06 0.053 0.052

In this way the approximation has a quite big error in the point 𝑖(𝑡) = 0 (𝛥 = 0.120, Table 1), while if
we analyze the entire remaining range of 𝑖(𝑡) > 0 (excluding the zero point), the Kolmogorov distance
does not ∑

𝑖≠0
𝛥 < 0.01. Unfortunately, it is not possible to analytically estimate the probability 𝑃0 from

System 1 or by the asymptotic analysis.
The results of the comparison of distributions for different values of are presented in Table 1 and

Figure 4.
From Table 1, it can be concluded that the accuracy of the approximation increases as the system

load increases and a negative arrival rate decreases.

5. Conclusion
In this study, a multiserver RQ-system with 𝜋-defeat is considered as a mathematical model of cloud
services. The asymptotic analysis method under a heavy load condition is applied. It is proven
that the asymptotic characteristic function of the distribution of the number of calls in the orbit
has the form of the gamma distribution function with the obtained parameters. A formula for the
system throughput is obtained. Numerical analysis is presented, demonstrating the accuracy of the
approximation.
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Асимптотический анализ многолинейной RQ-системы
с 𝜋-поражением в условии большой загрузки
Н. П. Мелошникова, Е. А. Фёдорова

Национальный исследовательский Томский государственный университет, пр. Ленина, д. 36, Томск,
634050, Российская Федерация

Аннотация.ВработеисследуетсямноголинейнаяRQ-система с𝜋-поражениемкакматематическаямодель
облачных сервисов. На вход системы поступает простейший поток «положительных» заявок. В системе
конечное число обслуживающих приборов, время обслуживания заявок на приборах распределено по
экспоненциальному закону. Когда все приборы заняты, заявки поступающие в систему переходят на
орбиту, где осуществляют случайную задержку. После осуществления задержки, заявки с орбиты обра-
щаются к блоку обслуживания согласно политике множественного доступа. Также в систему поступает
поток так называемых «отрицательных» заявок. Отрицательная заявка не нуждается в обслуживании:
при поступлении она удаляет случайное число обслуживаемых заявок. Для рассматриваемой модели
записаны уравнения Колмогорова в стационарном режиме. Предлагается метод асимптотического ана-
лиза в условии большой загрузки для нахождения стационарного распределения вероятностей числа
заявок на орбите. Представлены результаты численного анализа.

Ключевые слова: математическое моделирование, система массового обслуживания с повторными
вызовами, отрицательные заявки, асимптотический анализ, большая загрузка


