Results of long-term measurements of particulate matter in Lake Baikal

Обложка

Цитировать

Полный текст

Аннотация

For the first time, data on average annual particle fluxes in Lake Baikal from the past 22 years are presented. Sampling was carried out using sediment traps, which were installed at a mooring in the deep part of the Southern Basin of the lake (depth 1366 m) from March 1999 to March 2021. The total annual fluxes of sedimentary material during this period varied from 11.5 g m-2 y-1 to 208 g m-2 y-1. The peaks of fluxes correspond to the years of massive blooms of diatoms. Average total annual fluxes generally increase in the second half of the study period (since 2010), simultaneously with a change of the dominant diatom genera. We assume that the recent climate warming is responsible for these developments.

Полный текст

  1. Introduction

Over the last decades, significant climate changes have been recorded, which have a sincere impact on the environment of our planet.

The aim of this research is to study the variability of vertical fluxes and material composition of particles in Lake Baikal, using data of sediment trap measurements. Such a study is important for an understanding of processes of recent sedimentation under conditions of climate change.

  1. Materials and methods

During 22 years from March 1999 to March 2021, the collection and analysis of sedimentary matter from different depths of the water column of the Southern Baikal was performed. The work was carried out near the Baikal Neutrino Telescope observatory (51°46.076’ N 104°24948’ E) at a water depth of 1366 m by using a mooring with integrating cylindrical sediment traps (Vologina and Sturm, 2017). Details of the exposure data are given in Table. The sampled material was freeze-dried on an FD ALPHA instrument and weighed on an analytical balance OHAUS Pioneer. The total annual fluxes of particulate matter (TAF) were calculated in grams per square meter per year (g m-2 y-1). The qualitative composition of the sedimentary matter was determined in smear slides under a SK14 light microscope (PZO WARSZAWA, Poland) with a magnification of 100x and 400x. Preliminary data have been published in (Sturm et al., 2015).

 

Table. Details of the exposure of integrating sediment traps in Southern Baikal between 1999 and 2020.

Years

Dates

Exposure, days

Number of traps

Water depth, m

1999

11.03.1999–06.03.2000

361

15

100–1362

2000

09.03.2000–08.03.2001

364

15

100–1362

2001

09.03.2001–07.03.2002

363

14

100–1350

2002

08.03.2002–09.03.2003

366

14

100–1350

2003

11.03.2003–08.03.2004

363

14

100–1350

2004

11.03.2004–07.03.2005

361

18

50–1350

2005

08.03.2005–06.03.2006

363

18

50–1350

2006

12.03.2006-07.03.2007

360

18

50–1350

2007

11.03.2007-05.03.2008

360

18

30–1350

2008

09.03.2008-05.03.2009

361

18

30–1350

2009

08.03.2009-05.03.2010

361

17

50–1350

2010

14.03.2010–07.03.2011

358

10

100–1350

2011

09.03.2011–09.03.2012

366

10

100–1350

2012

11.03.2012–09.03.2013

363

10

100–1350

2013

10.03.2013–09.03.2014

364

10

100–1350

2014

11.03.2014–15.03.2015

369

10

100–1350

2015

07.03.2015–05.03.2016

364

10

100–1350

2016

07.03.2016–07.03.2017

365

10

107–1359

2017

08.03.2017–06.03.2018

363

10

100–1363

2018

08.03.2018–05.03.2019

362

10

100–1363

2019

06.03.2019–04.03.2020

364

10

100–1363

2020

06.03.2020–17.03.2021

376

10

100–1363

 

  1. Results and discussion

The description of smear slides indicates that the collected material contains biogenic and terrigenic particles. The biogenic part consists mainly of valves of diatom species of the genera Aulacoseira, Synedra, Cyclotella and amphipods (Gammarus genus). Additionally sponge spicules are also observed. Allochthonous biogenic material is represented by pollen particles. The terrigenous material consists mainly of mineral particles of clay size with a little content of silt.

TAF varied significantly during the observation period from 11.5 g m-2 y-1 (2006) to 208 g m-2 y-1 (2014), with an average value of 89.6 g m-2 y-1 (Fig.). Average TAF values from March 1999 to March 2010 amount 75.1 g m-2 y-1, and from March 2010 to March 2021 104 g m-2 y-1. Thus, the total amount of sedimentary matter that entered Baikal over the past 11 years has distinctly increased. It should be noted that values of the lowest traps (about 15 m above the lake floor) were not taken into account in the weight calculations, in order to exclude effects of sediment resuspension at the water/sediment interface, which took place in almost every year. For example, in 2004 TAF was 79.8 g m-2 y-1 at a depth of 1350 m, while at depths from 50 to 1200 m this value did not exceed 44.6 g m-2 y-1. Obviously, the high TAF values were associated with the resuspension of bottom sediments by currents and the activities of aquatic organisms.

 

Fig. Total annual fluxes (g m-2 y-1) in Southern Baikal between March 1999 and March 2021. Predominant genera of diatoms are indicated.

 

Peaks of TAF were observed in 2000, 2002, 2007, 2010, 2012, 2014, 2017 and 2020 (Fig.) and correspond to years mass blooms of diatoms. Diatoms of the genus Aulacoseira dominated in the sedimentary material sampled in 2000. Aulacoseira together with Synedra dominated in 2002 and 2007. Then, starting from 2010, species of the genus Synedra were the predominant diatoms (peaks recorded in 2010, 2012, 2014, 2017 and 2020; Fig.).

It is known that the abundance and biomass of diatoms vary in different years and seasons (Votintsev et al., 1975; Popovskaya, 1977; 2000; Jewson and Granin, 2014). This explains the significant fluctuations in TAF over the past 22 years. The literature describes the so-called “Melosira years”, when there was a significant increase in the bloom of species of the genus Melosira (now renamed as the genus Aulacoseira) (Kozhova, 1961; Kozhov, 1962; Antipova, 1963; Evstafyev et al., 2010). According to published data, 2000 was a “Melosira year” (Evstafyev et al., 2010; Jewson and Granin, 2014). This phenomenon was also recorded by us in the study of sedimentary matter taken by sediment traps from March 2000 to March 2001 (Vologina and Sturm, 2017). Aulacoseira was the predominant diatom genus in 2000. In 2002 and 2007 Aulacoseira and Synedra were the two main genera. The composition of diatoms in 2010, 2012, 2014, 2017 and 2020 was dominated by Synedra (Fig.). This period (2010–2021) was also associated with increased average TAF values.

It is noteworthy that species of the genus Aulacoseira are cold-loving diatoms (Votintsev et al., 1975; Chernyaeva et al., 2008). The dominance of the genus Synedra, observed in recent years, both in the water column and in the surface bottom sediments of Southern Baikal (Roberts et al., 2018; Vologina et al., 2019; Bondarenko et al., 2020; Vologina et al., 2020) is probably associated with climate warming. This is also revealed by an increased pelagic eutrophication of Southern Baikal (Izmest’eva et al., 2016). This conclusion is indirectly confirmed by results of the BDP-96 drill core from underwater Akademichesky Ridge of Lake Baikal, where the abundance peaks of Synedra are associated with warm isotopic stages (Khursevich et al., 2001).

  1. Conclusions

Monitoring of vertical particle fluxes carried out over the past 22 years using sediment traps in South Baikal allows us to reach the following main conclusions. The total annual flux of particulate material that settled on the lake floor of Baikal varied significantly during the study period. Maximum TAF values occur in years with massive diatom blooms. Between 1999-2021 a change in the dominant species of diatom genera has been observed: Aulacoseira prevailed in 2000; Aulacoseira together with Synedra in 2002 and 2007; Synedra dominated since 2010 (2010, 2012, 2014, 2017, 2020). Simultaneously, the average TAF has increased over the past 11 years. This and the decrease of cold-adapted diatoms are believed to have been caused by climate warming during the last years.

Acknowledgments

The authors are sincerely grateful to the members of the expedition NIIPF ISU for invaluable assistance in carrying out the work. The authors are also deeply grateful to I. Brunner (EAWAG) and E.G. Polyakova (IZK SB RAS) for analytical work and assistance in preparing samples for analysis. The study was carried out thanks to a long-term international collaboration supported by EAWAG (project no. 85145); cooperation between EAWAG, IEC SB RAS and NIIPF ISU and within the framework of the state task of IEC SB RAS (No. 0346-2019-0005) and ISU (FZZE-2020-0017). The equipment of the Central Collective Use Center «Geodynamics and Geochronology» of the IEC SB RAS was partially involved in the work.

Conflict of interest

The authors declare no competing interest.

×

Об авторах

E. G. Vologina

Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences

Автор, ответственный за переписку.
Email: vologina@crust.irk.ru
Россия, 128, Lermontov St., Irkutsk, 664033

M. Sturm

Swiss Federal Institute of Aquatic Science and Technology (Eawag)

Email: vologina@crust.irk.ru
Швейцария, 133, Überlandstrasse, Dübendorf, CH-8600

N. M. Budnev

Irkutsk State University

Email: vologina@crust.irk.ru
Россия, 1, K. Marx St., Irkutsk, 664003

Список литературы

  1. Antipova N.L. 1963. Variations in numbers of melosira species in the Lake Baikal plankton. Trudy Vsesoyuznogo Gidrobiologicheskogo Obshchestva AN SSSR [Transactions of the USSR Hydrobiological Society] 13: 235-241. (in Russian)
  2. Bondarenko N.A., Vorobyova S.S., Zhuchenko N.A. et al. 2020. Current state of phytoplankton in the littoral area of Lake Baikal, spring 2017. Journal of Great Lakes Research 46: 17-28. doi: 10.1016/j.jglr.2019.10.001
  3. Chernyaeva G.P., Rasskazov S.V., Rasskazov G.S. et al. 2008. Distribution of Aulacosira baicalensis (K. Meyer) Simonsen (Bacillariophyta) in the Late Cenozoic lakes of Eastern Siberia. In: XII All-Russian Palynological Conference, pp. 214-217. (in Russian)
  4. Evstafyev V.K., Bondarenko N.A., Melnik N.G. 2010. Analysis of longterm dynamics in key components of the food web in deep-water Lake Baikal. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Biologiya. Ekologiya» [Bulletin of the Irkutsk State University. Series “Biology. Ecology”] 3(1): 3-11. (in Russian)
  5. Izmest’eva L.R., Moore M.V., Hampton S.E. et al. 2016. Lake-wide physical and biological trends associated with warming in Lake Baikal. Journal of Great Lakes Research 42: 6-17. doi: 10.1016/j.jglr.2015.11.006
  6. Jewson D.H., Granin N.G. 2014. Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. European Journal of Phycology 50(1): 1-19. doi: 10.1080/09670262.2014.979450
  7. Khursevich G.K., Karabanov E.B., Prokopenko A.A. et al. 2001. Detailed diatom biostratigraphy of Baikal sediments during the Brunhes Chron and climatic factors of species formation. Geologiya i Geofizika [Geology and Geophysics] 42(1-2): 108129. (in Russian)
  8. Kozhov M.M. 1962. Biologiya ozera Baikal [Biology of Lake Baikal]. Moscow: Izd. AN SSSR. (in Russian)
  9. Kozhova O.M. 1961. Periodic changes in the evolution of Lake Baikal phytoplankton. Trudy Vsesoyuznogo Gidrobiologicheskogo Obshchestva AN SSSR [Transactions of the USSR Hydrobiological Society] 11: 28-43. (in Russian)
  10. Popovskaya G.I. 1977. Dynamics of deepwater phytoplankton. In: Bekman M.Yu. (Ed.), Biologicheskaya produktivnostʹ pelagiali Baikala i yeye izmenchivostʹ [Hemipelagic biological productivity of Lake Baikal and its variability]. Novosibirsk, pp. 5-39. (in Russian)
  11. Popovskaya G.I. 2000. Ecological monitoring of phytoplankton in Lake Baikal. Aquatic Ecosystem Health and Management 3: 215-225. doi: 10.1016/S1463-4988(00)00021-X
  12. Roberts S., Swann G.E.A., McGowan S. et al. 2018. Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia. PLOS ONE 13(12). doi: 10.1371/journal.pone.0208765
  13. Sturm M., Vologina E.G., Budnev N.M. et al. 2015. Results of 20 years of sediment trap monitoring. Particle dynamics in ocean-like Lake Baikal. In: 9th Symposium for European Freshwater Sciences «Freshwater sciences coming home», p. 165.
  14. Vologina E.G., Sturm M. 2017. Particulate fluxes in South Baikal: evidence from sediment trap Experiments. Russian Geology and Geophysics 58: 1045-1052. doi: 10.15372/GiG20170904
  15. Vologina E.G., Sturm M., Budnev N.M. 2019. The results of experiments with sediment traps in South Baikal from March 2013 to March 2015. In: XXIII International Scientific Conference (School) on marine geology “Geology of the seas and oceans”, pp. 20-24.
  16. Vologina E.G., Sturm M., Vorob’eva S.S. et al. 2020. Late Holocene sediments in the profound abyss of Southern Lake Baikal. Limnology and Freshwater Biology 2020(4): 585-587. doi: 10.31951/2658-3518-2020-A-4-585
  17. Votintsev K.K., Meshcheryakova A.I., Popovskaya G.I. 1975. Krugovorot organicheskogo veshchestva v ozere Baikal [Turnover of organic matter in Lake Baikal]. Novosibirsk: Nauka. (in Russian)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. Суммарные годовые потоки (г м-2 г-1) в Южном Байкале в период с марта 1999 г. по март 2021 г. Указаны преобладающие роды диатомей.

Скачать (85KB)

© Vologina E.G., Sturm M., Budnev N.M., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».