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ABSTRACT. This study was aimed to carry out a comparative analysis and reconstruction of the
phylogenetic position of coccidia from the intestine of the belica Leucaspius delineatus (Heckel, 1843)
from the Irkutsk Reservoir. Determination and comparative analysis of the nucleotide sequences of
the cox1 gene fragment, obtained and available in genetic databases, demonstrated paraphilia of the
genera Eimeria and Goussia. The sequences in the phylogenetic tree formed a distinct cluster at the base
of the tree. Thus, the hypothesis that fish coccidia were ancestors of coccidia of other vertebrates was
indirectly confirmed. The need for additional research and revision of coccidia in fishes from the Angara

River and Lake Baikal is discussed.
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1. Introduction

The efforts of human economic activities aimed
at altering and regulating of natural watercourses,
recreational developing of the coastal zone and
aquaculture growth have increased significantly over
the past 100 years. The side effect of this process has
been the expansion outside of natural habitats and
introduction of various hydrobiont species (Bancila et
al., 2022; Bernery et al., 2022; Zhu et al., 2022; Truter
et al., 2023).

In addition to the obvious consequences of
interactions between native fauna and invasive
species  (competition and predation; genetic
influences, hybridization and introgression), there is
a threat of introducing associated parasites and other
pathogens (Ellender and Weyl, 2014; Truter et al.,
2023). Significant epizootics have been described in
populations of various fish species caused by viruses,
imported with aquacultural species, oomycetes, and
protozoa (Kaminskas, 2021). For example, a significant
damage to the ichthyofauna of Europe and America was
caused by Sphaerothecum destruens Arkush, Mendoza,
Adkison & Hedrick, 2003 - an intracellular parasite
of the stone moroco Pseudorasbora parva (Temminck
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& Schlegel, 1846) introduced from China (Andreou et
al., 2012). In this regard, molecular genetic studies are
particularly in demand when describing the distribution
of invasive fish species as well as their parasites (Ali
et al.,, 2022; Alyamkin et al., 2022; Dos Santos and
Avenant-Oldewage, 2022).

All representatives of the protists of Sporozoa
or Apicomplexa, belonging to the group Alveolata, are
unicellular obligate parasites of multicellular animals
and are also considered one of the most successful
parasites in the world (Morrison, 2009). More than
6000 species described are thought to represent
only 0.1% of their total diversity (Morrison, 2009).
Representatives of Apicomplexa, which belong to
the genera Cryptosporidium, Plasmodium, Toxoplasma,
and Babesia, are pathogens of humans and animals.
In addition, coccidia cause significant damage to
agricultural production (Conoidasida: Eimeriorina).
However, despite their widespread distribution and
economic importance, research on the evolutionary
relationships within this group is in its infancy (Arisue
and Hashimoto, 2015; Xavier et al., 2018). The
taxonomy of coccidia is in the developmental stage, and
many genera are paraphyletic that call into question the
value of strict morphological and ecological characters
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for parasite classification (Ogedengbe et al., 2018;
Xavier et al., 2018). Moreover, representatives of the
suborder Eimeriorina have been much less studied in
aquatic animals than in terrestrial animals. However,
even the poor data available for the small subunit
ribosomal RNA (SSU rRNA) sequences suggest that
these are the basic groups within the families (Jirka et
al., 2009; Xavier et al., 2018).

The belica Leucaspius delineatus (Heckel, 1843),
which historically was a representative of the Ponto-
Caspian ichthyofauna, has significantly expanded its
habitat through accidental introduction and further
self-distribution (Slynko and Tereschenko, 2014;
Reshetnikov et al., 2017). Molecular genetic studies
of the belica from the Irkutsk Reservoir confirmed
the information about accidental introduction of the
species from the European part of Russia (Kulakova et
al., 2022). Representatives of coccidia have been found
in the native habitat of the belica (Jastrzebski, 1984;
Belova and Krylov, 2006; Pugachev et al., 2012). There
are few data on parasite fauna of the belica from the
Irkutsk Reservoir (Denikina et al., 2023). Therefore, the
study was aimed to carry out a comparative analysis
and reconstruction of the phylogenetic position of
coccidia from the intestine of the belica.

2. Materials and methods

The capture site with coordinates 52°12’37” N,
104°25’28"” E was located in the Irkutsk Reservoir on
the Angara River. The fish were caught from a depth of
2-3 m with hooked gear in July and August 2019. Fish
were euthanized with an overdose of anesthetic (GOST
33219-2014, 2016) using a 2% lidocaine solution
(Lidocaine Bufus, Renewal, Russia). A total of 20 adults
were caught. Specimens were transported in ice and
stored at — 20°C. The weight and standard length of
fish studied (mean + SE) were 2.6 = 0.2 g and 5.8 =+
1.4 cm, respectively (Kulakova et al., 2022; Denikina
et al., 2023).

To isolate DNA from all individuals, the intestines
and their content were removed and combined into a
single sample. According to the manufacturer’s instruc-
tions, total DNA was isolated using an AmpliSense DNA-
sorb-AM extraction kit (Russia). A fragment of the cyto-
chrome c oxidase (cox1) subunit 1 gene was amplified
with MiSeq primers: COIintF 5’tcgtcggcagcgtcagatgtg-
tataagagacagGGWACWGGWTGAACWGTWTAYCCYCC
and dgHCO2198 5 gtctcgtgggetcggagatgtgtataagaga-
cagTAIACYTCIGGRTGICCRAARAAYCA (Leray et al.,
2013). A library from the purified amplicon pool was
constructed using the Nextera XT kit (Illumina, Hay-
ward, CA, USA), and nucleotide sequences were deter-
mined with Illumina NextSeq. After bioinformatic pro-
cessing, the resulting overlapping paired reads (contigs)
were filtered according to the quality of the reads and
their length. The data obtained were deposited into the
NCBI international database with the bioproject regis-
tration number PRIJINA648490 (Denikina et al., 2023).

Primary processing and translation of
the nucleotide sequences obtained and data on
representatives of the suborder Eimeriorina in the
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GenBank database (Table) were performed using
the BioEdit program and aligned with the ClustalW
software. Phylogenetic analysis was performed using
MEGA?7 software (Kumar et al., 2016).

The evolutionary history based on nucleotide
sequences was inferred with the Maximum Likelihood
Estimation (MLE) method using the Tamura-Nei model
(Tamura and Nei, 1993). The evolutionary history
based on amino-acid sequences was derived with the Le-
Gascuel method (Nei and Kumar, 2000; Le and Gascuel,
2008). In both cases, the discrete gamma distribution
was applied to model differences in evolutionary rates
among sites. Statistical support for branch nodes was
assessed using bootstrap analysis, 2000 replicates.

3. Results and discussion

Analysis of metagenomic DNA sequencing
data from the intestine of the belica resulted in the
determination of coccidia sequences. Eimeriorina
accounted for more than 6.4% of the total pool of
sequences obtained. Polymorphism of the parasite
population was detected: there were 9 genotypes, with
99% of the sequences belonged to four (76.14; 10.65;
7.95 and 4.3%). The genotypes differ from each other
by point mutations, only three sites resulted in amino
acid replacements with similar charge and radical (V to
). The results obtained do not allow a clear conclusion
about the abundance of Eimeriorina species in the
analyzed material and require further research.

Fish coccidia are relatively understudied and
nucleotide data for them are extremely scarce (at
best, SSU rRNA genes have been identified). This fact
is due to the lack of taxon-specific conserved regions
in the SSU rRNA gene, which makes direct molecular
genetic diagnosis of Eimeriorina more difficult. The
cox] mtDNA gene sequences of fish coccidia are not
available in the GenBank database. Sequences of
Eimeriorina representatives of birds, rodents, primates,
marsupials, and reptiles were used in the analysis; the
cox] mtDNA gene sequence of Toxoplasma gondii was
presented as an out-group (Table, Fig. 1).

In the dendrogram, the nucleotide sequences
of coccidian of the belica formed a distinct cluster
Eimeriorina* located at the base of the tree (Fig. 1).
In this case, the tree is not resolved, and the support
of the major branches is extremely low (from 0%).
The phylogenetic reconstruction based on the analysis
of the corresponding amino acid sequences (Fig. 2) is
much more reliable: the Eimeriorina* cluster is formed
with a more significant support (85%). The branching
within the coccidia cluster from terrestrial vertebrates
is weakly and unreliably supported, as in the case of the
nucleotide sequences (Fig. 2).

On the one hand, this fact is evidence of a
significant gap in our knowledge of the mitochondrial
genomes of these parasites because the coxl mtDNA
gene sequences of fish coccidia are not available in the
GenBank database. Moreover, there is no correlation
of branching order with genus affiliation, and a very
relative affiliation with a host in the phylogenetic tree
constructed on the basis of SSU rRNA gene sequences
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Table. Characterization of the nucleotide sequences of the cox1 gene of the representatives of the suborder Eimeriorina from
the GenBank database.

Species Host Location of NoNe GenBank
sampling site
Caryospora bigenetica Sistrurus catenatus USA KF859856
Wacha and Christiensen, 1982 (Say, 1823)
Cyclospora cayetanensis Homo sapiens Linnaeus, 1758 USA MN260359;
Ortega, Gilman & Sterling, 1994 MN260361;
MN260362;
MN260363;
MN260364;
MN260366;
MN316534;
MN316535
Eimeria acervulina Tyzzer, 1929 Gallus gallus PRC EF158855
(Linnaeus, 1758)
Eimeria anseris (Kotlan, 1932) Anser albifrons PRC MH758793
(Scopoli, 1769)
Eimeria brunetti Levine, 1942 G. gallus Canada HM771675
Eimeria falciformis (Eimer, 1870) Mus musculus Linnaeus, 1758 Germany MH777557
Eimeria flavescens Oryctolagus cuniculus (Linnaeus, 1758) PRC KP025693
Marotel & Guilhon, 1941
Eimeria furonis Hoare, 1927 Mustela putorius Canada MF774035
Linnaeus, 1758
Eimeria gaimardi Barker, O’Callaghan, and | Bettongia gaimardi (Desmarest, 1822) Australia MK202809
Beveridge, 1988
Eimeria maxima Tyzzer, 1929 G. gallus USA FJ236459
Eimeria meleagrimitis Tyzzer 1929 Meleagris gallopavo Linnaeus, 1758 Canada KJ526131
Eimeria mephitidis Andrews 1928 Mephitis mephitis Canada KT203398
(Schreber, 1776)
Eimeria mitis Tyzzer, 1929 G. gallus Chech Republic FR796699
Eimeria mundayi Barker, O’Callaghan, and Potorous tridactylus Australia MK202808
Beveridge, 1988 (Kerr, 1792)
Eimeria necatrix Johnson, 1930 G. gallus Canada HM771680
Eimeria papillata Ernst, Chobotar, & M. musculus Canada KT184377
Hammond, 1971
Eimeria piriformis O. cuniculus Chech Republic JQ993698
Kotlan & Pospesch, 1934
Eimeria potoroi Barker, O’Callaghan, and P. tridactylus Australia MK202807
Beveridge, 1988
Eimeria praecox Johnson, 1930 G. gallus Canada JQ659301
Eimeria tenella (Railliet & Lucet, 1891) G. gallus Sudan MF497440
Fantham, 1909
Eimeria subspherica Bos taurus Linnaeus, 1758 Turkey KU351704
Christensen, 1941
Eimeria trichosuri Trichosurus caninus Australia JN192136
O’Callaghan & O’Donoghue, 2001 (Ogilby, 1835)
Eimeria vermiformis Ernst, Chobotar and Apodemus flavicollis (Melchior, 1834) Germany MK257110
Hammond, 1971
Eimeria woyliei Bettongia anhydra Australia MK202806
Northover et al., 2019 Finlayson , 1957
Eimeria zuernii B. taurus Canada, PRC, HM771687;
(Rivolta, 1878) Martin, 1909 Australia KX495130;
OL770312
Eimeria sp. Coturnix coturnix Egypt MF496271
(Linnaeus, 1758)
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Species

Host

Eimeria sp. 1

Isospora amphiboluri
Cannon, 1967

Isospora butcherae
Yang, Brice, Jian & Ryan, 2018

Isospora coerebae
Berto et al., 2011

Isospora coronoideae
Liu et al., 2019

Isospora greineri Hafeez et al. 2014

Isospora gryphoni Olson, Gissing, Barta &
Middleton, 1998

Isospora lacazei (Labbé, 1893)

Isospora manorinae
Yang, Brice, Jian & Ryan 2016

Isospora mayuri Patnaik, 1966

Isospora phylidonyrisae
Yang, Brice, Berto & Ryan, 2021

Isospora picoflavae Rejman, Hak-Kovacs &
Barta, 2021

Isospora serini (Aragao, 1933)

Isospora serinuse
Yang, Brice, Elliot & Ryan 2015

Isospora superbusi
Hafeez et al. 2014

Isospora svecica
Trefancova & Kvicerova, 2019

Isospora sp.

Isospora sp. 1
Isospora sp. 2
Isospora sp. 3
Isospora sp. 4

Lankesterella minima
(Chaussat, 1850) Noller, 1912

Toxoplasma gondii
(Nicolle & Manceaux, 1908)

Tiliqua rugosa subsp. rugosa Gray, 1825

Ctenophorus nuchalis
(De Vis, 1884)

Zosterops lateralis
(Latham, 1802)

Coereba flaveola
(Linnaeus, 1758)

Corvus coronoides
Vigors & Horsfield, 1827

Lamprotornis superbus Riippell, 1845

Carduelis tristis
(Linnaeus, 1758)

Pavo cristatus Linnaeus, 1758

Manorina flavigula subsp. wayensis
(Mathews, 1912)

D. cristatus

Phylidonyris novaehollandiae (Latham,
1790)

Colaptes auratus subsp. luteus Bangs, 1898

Serinus canaria
(Linnaeus, 1758)

S. canaria
Lamprotornis superbus Riippell, 1845

Luscinia svecica subsp. cyanecula (Wolf,
1810)

Sturnus vulgaris
Linnaeus, 1758

S. canaria

M. gallopavo

S. vulgaris

Carduelis carduelis (Linnaeus, 1758)

Lithobates clamitans (Latreille, 1801)

Location of NoNe GenBank
sampling site
Australia JX839284
Australia KR108297;
MW720599
Australia KY801687
Brazil 0OK194672
Australia MK867778
Canada KR108298
Canada KC346355
PRC MW?775672
Australia KT224377
PRC MW775673
Australia MW423631
Canada NC_065382
Brazil ON584773
Australia KX276860
Canada KT203396
Chech Republic MK573841
USA 0L999169
Canada KP658103
Canada KC346356
USA 0L999161
Great Britain 0L999140
Canada KT184381
Strain ME49, Center for tropical and emerging global MNO077082
diseases, University of Georgia, USA

(Molnér et al., 2012; Couso-Pérez et al., 2019; Liu et al.,
2021). On the other hand, it was previously hypothesized
that it was the fish coccidia that gave rise to all known
coccidia lineages in other vertebrates (Rosenthal et
al., 2016; Xavier et al., 2018). Perhaps, our results are
an indirect confirmation of this hypothesis, and the
Eimeriorina* cluster (Figs. 1, 2) will be replenished
when new nucleotide data on mitochondrial genomes
of fish coccidia appear.

The obvious paraphilia of the genera Eimeria
and Goussia, which was discussed many times and
proven previously (Jirki et al., 2009; Ogedengbe
et al., 2018; Xavier et al., 2018), is also reflected in
our dendrograms. Undoubtedly, a revision of the
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main phenotypic characteristics, which determine the
taxonomic affiliation of coccidia, is required.

Eimeria cyprinorum Stankovih, 1921 (Syn.:
Goussia carpelli (Léger et Stankovith, 1921), Goussia
carpelli (Léger et Stankovith, 1921) (Syn.: Eimeria
carpelli Léger et Stankovith, 1921; E. cyprini Plehn, 1924;
E. cyprinorum Stankovith, 1921; E. wierzejskii Hoer,
1904) and Eimeria sp. (Jastrzebski, 1984; Kirjusina and
Vismanis, 2007; Belova and Krylov, 2006; Pugachev et
al., 2012) were found in the belica in the native habitat
(water bodies and watercourses of the Ponto-Caspian
basin as well as the Baltic Sea basin).

Earlier, G. carpelli was found in several species
(Pugachev et al., 2012), including Lake Baikal hornbill
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al.,, 2008), for instance, with cestodes of the genus
Caryophyllaeus (Denikina etal., 2023). Thus, the presence
of the nucleotide sequences of the representatives of
Eimeriorina in the intestines of fish could indicate
feeding of the belica by infected oligochaetes. In this
regard, the need for revision of parasites in fish of the
Angara River and Lake Baikal and additional studies of
their biology and ecology is considered.

4. Conclusion

The results of comparative analysis and
reconstruction of the phylogenetic position of
coccidia from the intestine of the belica from the
Irkutsk Reservoir revealed a significant gap in the
knowledge of their mitochondrial genomes expressed
in the absence of the cox] mtDNA gene sequences of
Eimeriorina representatives from fish in the GenBank
database. Determination of the coxl gene fragment
and comparative analysis of the obtained nucleotide
sequences and those available in genetic databases
revealed paraphilia of the genera Eimeria and Goussia.
In the dendrograms, the sequences of the belica
coccidia formed a distinct cluster Eimeriorina*, located
at the base of the tree. Polymorphism of the parasite
population was detected, but the results obtained did
not allow a clear conclusion about the abundance
of Eimeriorina species in the analyzed material and
required further investigations. Thus, the hypothesis
that coccidia of fish were ancestors of coccidia of other
vertebrates was indirectly confirmed. In this regard, the
need for revision of parasites in fish of the Angara River
and Lake Baikal and additional studies of their biology
and ecology are considered.
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