Neural networks as a foreign language teaching tool

封面

如何引用文章

详细

this study examines the potential applications of neural networks as tools for foreign language instruction, driven by the need to adapt educational processes to digital transformation and the widespread adoption of artificial intelligence technologies. The research aims to evaluate the effectiveness of neural networks, particularly the Twee platform, in automating the creation of teaching materials. AI solutions address pressing challenges such as reducing plagiarism through unique task generation and decreasing instructors' workload. A comparative analysis of Twee's functionality versus general-purpose language models (ChatGPT, DeepSeek, Gemini) reveals that its domain-specific interface significantly minimizes prompt engineering requirements and simplifies AI-assisted pedagogy. The practical relevance is evidenced by automatically generated exercises (discussion prompts, gap-fill activities, lexical tests), demonstrating Twee's capacity to align content with CEFR levels (A1-C2) and learners' age groups. However, legal examination uncovers unresolved copyright issues. Despite neural networks' simulated creativity (e.g., "deep thinking" functions), the protectability of AI-generated materials remains contested. Findings suggest neural networks are currently best deployed for routine educational tasks. Future research should investigate AI's long-term impact on language acquisition efficacy and develop legal frameworks to safeguard authorship amid education's digital transformation.

作者简介

P. Anisimova

Moscow State Institute of International Relations of the Ministry of Foreign Affairs of the Russian Federation

参考

  1. Раицкая Л.К., Ламбовска М.Р. Перспективы применения ChatGPT для высшего образования: обзор международных исследований // ИТС. 2024. № 1. С. 12 – 21. URL: https://cyberleninka.ru/article/n/perspektivy-primeneniya-chatgpt-dlya-vysshego-obrazovaniya-obzor-mezhdunarodnyh-issledovaniy
  2. King M.R., ChatGPT. A conversation on artificial intelligence, chatbots, and plagiarism in higher education // Cellular and Molecular Bioengineering. 2023. Vol. 16. P. 1 – 2. URL: https://doi.org/10.1007/s12195-022-00754-8
  3. Ивахненко Е.Н., Никольский В.С. ChatGPT в высшем образовании и науке: угроза или ценный ресурс? // Высшее образование в России. 2023. № 4. С. 9 – 22. URL: https://cyberleninka.ru/article/n/chatgpt-v-vysshem-obrazovanii-i-nauke-ugroza-ili-tsennyy-resurs
  4. Евстигнеев М.Н. Нейросеть Twee – новый инструментарий для педагога английского языка // Вестник ТГУ. 2023. № 6. С. 1428 – 1442. URL: https://cyberleninka.ru/article/n/neyroset-twee-novyy-instrumentariy-dlya-pedagoga-angliyskogo-yazyka
  5. Анисимова П.П. Сравнительный анализ охраноспособности объектов авторского права в РФ и США в цифровую эпоху: дис. ... магистра юриспруденции: 40.04.01. М., 2020. 103 c.
  6. Руденко М.Б., Голодков Ю.Э., Карелин А.Г. Искусственный интеллект в образовании: возможности и риски // Образование и право. 2023. № 10. С. 363 – 366. URL: https://cyberleninka.ru/article/n/iskusstvennyy-intellekt-v-obrazovanii-vozmozhnosti-i-riski
  7. Mollick E.R., Mollick L. Using AI to implement effective teaching strategies in classrooms: five strategies, including prompts // SSRN. 2023. 24 p. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4391243
  8. Martinez C.A.S., Montoya O.L.Q. The ethics of algorithms from the perspective of the cultural history of consciousness: first look // AI & Society. 2023. Vol. 38. P. 763 – 775. URL: https://doi.org/10.1007/s00146-022-01475-2
  9. Hwang G.-J., Xie H., Wah B. W., Ga?evi? D. Vision, challenges, roles and research issues of artificial intelligence in education // Computers and Education: Artificial Intelligence. 2020. Vol. 1. P. 1 – 5. URL: https://doi.org/10.1016/j.caeai.2020.100001
  10. Chiu T.K.F., Xia Q., Zhou X., Chai C.S., Cheng M. Systematic Literature Review on Opportunities, Challenges, and Future Research Recommendations of Artificial Intelligence in Education // Computers and Education: Artificial Intelligence. 2023. Vol. 4. P. 1 – 18. URL: https://doi.org/10.1016/j.caeai.2022.100118

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).