Применение методов декомпозиции и интегральных многообразий к сингулярно возмущенной задаче кинетики суицидного субстрата

Обложка

Цитировать

Полный текст

Аннотация

Целью данной статьи является редукция сингулярно возмущенной системы кинетики суицидного субстрата. Применяются методы декомпозиции и интегральных многообразий. Понижается размерность исходной задачи. Проводится анализ полученных уравнений на интегральном многообразии на устойчивость. Приводится пример сравнения численных решений исходной системы и полученной после понижения размерности вышеуказанными методами.

Полный текст

1 Предварительные сведения

В моделях химической кинетики наличие малого параметра связано с тем, что в химической системе одновременно происходят существенно разнящиеся скоростью процессы. Значительное число публикаций по теории и приложениям как методов упрощения моделей макроскопической кинетики, так и моделирования критических явлений включает в себя большое разнообразие задач, сочетающихся со сравнительно небольшим арсеналом применяемых средств анализа и довольно распространенным мнением, что эти задачи не имеют ничего общего как по своей постановке, так и по методам решения. Понижение размерности моделей является важнейшим приемом исследования сложных систем любой природы, разумеется, не только в области энзимной кинетики, а критические явления исключительно важны и сами по себе, и как инструмент познания сложных процессов. Основываясь на геометрической теории сингулярных возмущений, появился подход, позволяющий с единых позиций этой теории рассматривать и методы редукции кинетических систем, и методы математического моделирования критических явлений в таковых. В статье описывается применение метода интегральных многообразий к редукции [1] системы [2] из раздела "Кинетика суицидного субстрата". Работа [3] подробно описывает обоснование алгоритма декомпозиции задачи энзимной кинетики для динамических систем с быстрыми и медленными переменными и построения интегральных многообразий [4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 8], основные результаты теории интегральных многообразий содержатся в [9], источники [10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 11] также относятся к вышеупомянутым категориям. Для указанных выше систем данные субстраты важны, поскольку они обеспечивают способ нацеливания на определенный фермент для инактивации. Они особенно полезны при введении лекарственных средств, поскольку они не вредны в своей обычной форме, и только определенный фермент может преобразовать их в форму ингибитора. Например, субстраты самоубийства были исследованы для использования при лечении депрессии, эпилепсии и некоторых опухолей.

2 Постановка задачи. Исходная система и ее матричная форма

 В данной работе рассматривается система уравнений кинетики суицидного субстрата с безразмерными коэффициентами и переменными:

                                          ds(t) dt =s((ϵp+1)ϵpξ(ϵp+1)ζ(ϵp+1) e i )+ ρ 1+ρ ξ,(2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaam4CaiaaiIcacaWG0bGaaGykaaqaaiaadsgacaWG0baaaiaa i2dacqGHsislcaWGZbGaaGikaiaaiIcatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlaadchacqGHRaWkcaaIXaGa aGykaiabgkHiTiab=v=aYlaadchacqaH+oaEcqGHsislcaaIOaGae8 x9diVaamiCaiabgUcaRiaaigdacaaIPaGaeqOTdONaeyOeI0IaaGik aiab=v=aYlaadchacqGHRaWkcaaIXaGaaGykaiaadwgadaWgaaWcba GaamyAaaqabaGccaaIPaGaey4kaSYaaSaaaeaacqaHbpGCaeaacaaI XaGaey4kaSIaeqyWdihaaiabe67a4jaaiYcacaaIOaGaaGOmaiaai6 cacaaIXaGaaGykaaaa@76DC@

                                                              d e i (t) dt =ωζ,(2.2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaqaaiaadsgacaWG0baaaiaai2dacqaHjpWDcqaH2oGEcaaISaGaaG ikaiaaikdacaaIUaGaaGOmaiaaiMcaaaa@47EA@

                                             ϵ dξ(t) dt =s((ϵp+1)ϵpξ(ϵp+1)ζ(ϵp+1) e i )ξ,(2.3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH+oaEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aGaam4CaiaaiIcacaaIOaGae8x9diVaamiCaiabgUcaRiaaigda caaIPaGaeyOeI0Iae8x9diVaamiCaiabe67a4jabgkHiTiaaiIcacq WF1pG8caWGWbGaey4kaSIaaGymaiaaiMcacqaH2oGEcqGHsislcaaI OaGae8x9diVaamiCaiabgUcaRiaaigdacaaIPaGaamyzamaaBaaale aacaWGPbaabeaakiaaiMcacqGHsislcqaH+oaEcaaISaGaaGikaiaa ikdacaaIUaGaaG4maiaaiMcaaaa@7409@

                                                      ϵ dζ(t) dt = ϵp (1+ϵp)(1+ρ) ξψζ(2.4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH2oGEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aWaaSaaaeaacqWF1pG8caWGWbaabaGaaGikaiaaigdacqGHRaWk cqWF1pG8caWGWbGaaGykaiaaiIcacaaIXaGaey4kaSIaeqyWdiNaaG ykaaaacqaH+oaEcqGHsislcqaHipqEcqaH2oGEcaaIOaGaaGOmaiaa i6cacaaI0aGaaGykaaaa@642D@

с начальными условиями:

                                                   s(0)=1,ξ(0)=0,ζ(0)=0, e i (0)=0.(2.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacaaIWaGaaGykaiaai2dacaaIXaGaaGilaiabe67a4jaaiIcacaaI WaGaaGykaiaai2dacaaIWaGaaGilaiabeA7a6jaaiIcacaaIWaGaaG ykaiaai2dacaaIWaGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGc caaIOaGaaGimaiaaiMcacaaI9aGaaGimaiaai6cacaaIOaGaaGOmai aai6cacaaI1aGaaGykaaaa@5380@

В фундаментальной монографии [2] описан алгоритм сведения кооперативного явления к данной обезразмеренной системе (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.5). Коэффициенты системы (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.5) и малый параметр ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8aaa@4402@  определяются формулами:

                               K m = k 1 + k 2 k 1 ,σ= s 0 K m ,ϵ= e 0 e 0 + K m ,ρ= k 1 k 2 ,p= σ ϵ ,ψ= k 3 + k 4 k 1 + k 2 ,ω= ϕ 1+ϵp ,ϕ= k 4 k 1 + k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGTbaabeaakiaai2dadaWcaaqaaiaadUgadaWgaaWcbaGa eyOeI0IaaGymaaqabaGccqGHRaWkcaWGRbWaaSbaaSqaaiaaikdaae qaaaGcbaGaam4AamaaBaaaleaacaaIXaaabeaaaaGccaaISaGaeq4W dmNaaGypamaalaaabaGaam4CamaaBaaaleaacaaIWaaabeaaaOqaai aadUeadaWgaaWcbaGaamyBaaqabaaaaOGaaGilamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaGypamaalaaaba GaamyzamaaBaaaleaacaaIWaaabeaaaOqaaiaadwgadaWgaaWcbaGa aGimaaqabaGccqGHRaWkcaWGlbWaaSbaaSqaaiaad2gaaeqaaaaaki aaiYcacqaHbpGCcaaI9aWaaSaaaeaacaWGRbWaaSbaaSqaaiabgkHi TiaaigdaaeqaaaGcbaGaam4AamaaBaaaleaacaaIYaaabeaaaaGcca aISaGaamiCaiaai2dadaWcaaqaaiabeo8aZbqaaiab=v=aYdaacaaI SaGaeqiYdKNaaGypamaalaaabaGaam4AamaaBaaaleaacaaIZaaabe aakiabgUcaRiaadUgadaWgaaWcbaGaaGinaaqabaaakeaacaWGRbWa aSbaaSqaaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam4AamaaBaaale aacaaIYaaabeaaaaGccaaISaGaeqyYdCNaaGypamaalaaabaGaeqy1 dygabaGaaGymaiabgUcaRiab=v=aYlaadchaaaGaaGilaiabew9aMj aai2dadaWcaaqaaiaadUgadaWgaaWcbaGaaGinaaqabaaakeaacaWG RbWaaSbaaSqaaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam4AamaaBa aaleaacaaIYaaabeaaaaGccaaIUaaaaa@8F7C@

Здесь e 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaaIWaaabeaaaaa@39D7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  начальная концентрация фермента, s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaaaaa@39E5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  начальная концентрация субстрата, k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacqGHsislcaaIXaaabeaaaaa@3ACB@ , k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIXaaabeaaaaa@39DE@ , k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIYaaabeaaaaa@39DF@ , k 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIZaaabeaaaaa@39E0@  и k 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaI0aaabeaaaaa@39E1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  постоянные положительные параметры скоростей реакций.

Поскольку 0<ϵ1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=a Yhbbfv3ySLgzGueE0jxyaGGbaiab+PMi9iaaigdaaaa@4C27@ , система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) содержит разнотемповые переменные. Непосредственное численное интегрирование таких систем связано с вычислительной жесткостью, что продиктовано наличием малого параметра в знаменателе правой части дифференциального уравнения. Поэтому в данной статье к решению и анализу системы (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.5) применяются методы декомпозиции и интегральных многообразий [3; 4; 8; 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 18].

Обозначим через x= s(t) e i (t) ,y= ξ(t) ζ(t) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dadaqadaqaauaabeqaceaaaeaacaWGZbGaaGikaiaadshacaaIPaaa baGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaa aaaiaawIcacaGLPaaacaaISaGaamyEaiaai2dadaqadaqaauaabeqa ceaaaeaacqaH+oaEcaaIOaGaamiDaiaaiMcaaeaacqaH2oGEcaaIOa GaamiDaiaaiMcaaaaacaGLOaGaayzkaaGaaGilaaaa@5026@   F= ϵps+ ρ ρ+1 (ϵp+1)s 0 ω , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaai2 dadaqadaqaauaabeqaciaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqbciab=v=aYlaadchacaWGZbGaey4kaSYaaSaaae aacqaHbpGCaeaacqaHbpGCcqGHRaWkcaaIXaaaaaqaaiaaiIcacqWF 1pG8caWGWbGaey4kaSIaaGymaiaaiMcacaWGZbaabaGaaGimaaqaai abeM8a3baaaiaawIcacaGLPaaacaaISaaaaa@59C4@

 f=(p+1)(ei1)s0, Gϵsp1sϵp+pϵ+ϵp+ρψ,gϵp+sϵp+sei0G=sp1s(p+1)p(1+p)(1+ρ)ψ,g=(p+1)s(p+1)sei0

Тогда система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) в матричной форме примет вид:

                                                        x ˙ =f(x,t,ϵ)+F(x,t,ϵ)y,(2.6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaca GaaGypaiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaGykai abgUcaRiaadAeacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiab=v=a YlaaiMcacaWG5bGaaGilaiaaiIcacaaIYaGaaGOlaiaaiAdacaaIPa aaaa@59B1@

                                                        ϵ y ˙ =g(x,t,ϵ)+G(x,t,ϵ)y.(2.7) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8ceWG5bGbaiaa caaI9aGaam4zaiaaiIcacaWG4bGaaGilaiaadshacaaISaGae8x9di VaaGykaiabgUcaRiaadEeacaaIOaGaamiEaiaaiYcacaWG0bGaaGil aiab=v=aYlaaiMcacaWG5bGaaGOlaiaaiIcacaaIYaGaaGOlaiaaiE dacaaIPaaaaa@5C26@

Начальные условия (2.5) тоже запишем в векторной форме:

                                                 x(0)= s(0) e i (0) = 1 0 ,y(0)= ξ(0) ζ(0) = 0 0 .(2.8) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaaIWaGaaGykaiaai2dadaqadaqaauaabeqaceaaaeaacaWGZbGa aGikaiaaicdacaaIPaaabaGaamyzamaaBaaaleaacaWGPbaabeaaki aaiIcacaaIWaGaaGykaaaaaiaawIcacaGLPaaacaaI9aWaaeWaaeaa faqabeGabaaabaGaaGymaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaG ilaiaayIW7caWG5bGaaGikaiaaicdacaaIPaGaaGypamaabmaabaqb aeqabiqaaaqaaiabe67a4jaaiIcacaaIWaGaaGykaaqaaiabeA7a6j aaiIcacaaIWaGaaGykaaaaaiaawIcacaGLPaaacaaI9aWaaeWaaeaa faqabeGabaaabaGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaG OlaiaaiIcacaaIYaGaaGOlaiaaiIdacaaIPaaaaa@6039@

Полученная система (2.6), (2.7) является сингулярно возмущенной системой дифференциальных уравнений, линейной по быстрым переменным.

Вопросы существования интегрального многообразия систем типа (2.6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.8), алгоритм построения асимптотики подробно описаны в работах [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 4].

3 Существование, построение и устойчивость интегрального многообразия

 Для (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) вырожденная система (при ϵ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaI9aGaaGim aaaa@4583@  ) имеет вид:

                                                      null

                                                              d e i (t) dt =ωζ,(3.2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaqaaiaadsgacaWG0baaaiaai2dacqaHjpWDcqaH2oGEcaaISaGaaG ikaiaaiodacaaIUaGaaGOmaiaaiMcaaaa@47EB@

                                                           0=s(1ζ e i )ξ,(3.3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaai2 dacaWGZbGaaGikaiaaigdacqGHsislcqaH2oGEcqGHsislcaWGLbWa aSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabe67a4jaaiYcaca aIOaGaaG4maiaai6cacaaIZaGaaGykaaaa@4942@

                                                                0=ψζ.(3.4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaai2 dacqGHsislcqaHipqEcqaH2oGEcaaIUaGaaGikaiaaiodacaaIUaGa aGinaiaaiMcaaaa@4250@

Отметим, что:

I. Уравнения (3.3) и (3.4) дают единственное решение ξ=s(1ζ e i ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypaiaadohacaaIOaGaaGymaiabgkHiTiabeA7a6jabgkHiTiaadwga daWgaaWcbaGaamyAaaqabaGccaaIPaGaaGilaaaa@4404@   ζ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaaG ypaiaaicdacaaIUaaaaa@3BFD@

II. Функции правых частей уравнений (2.6), (2.7) и их частные производные по всем переменным до третьего порядка включительно равномерно непрерывны и ограничены.

III. Определитель матрицы null и след матрицы G 0 (x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam 4ramaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGilaaaa@3F77@  равный 1+ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgU caRiabeI8a5baa@3B72@ , положительны.

Из [1; 4] следует, что система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) имеет устойчивое интегральное многообразие медленных движений вида y=h(t,x,ϵ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaWGObGaaGikaiaadshacaaISaGaamiEaiaaiYcatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlaaiMcaaaa@4B7B@ , движение по которому описывается уравнениями (опускаем промежуточные преобразования):

                                              s ˙ = 1 ρ+1 ϵ p+pρρ (ρ+1) 2 s+ 1 ρ+1 e i s+ϵP(s, e i )(3.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaca GaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiabeg8aYjabgUcaRiaa igdaaaGaeyOeI0Yefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiuGacqWF1pG8daWcaaqaaiaadchacqGHRaWkcaWGWbGaeqyWdiNa eyOeI0IaeqyWdihabaGaaGikaiabeg8aYjabgUcaRiaaigdacaaIPa WaaWbaaSqabeaacaaIYaaaaaaakiaadohacqGHRaWkdaWcaaqaaiaa igdaaeaacqaHbpGCcqGHRaWkcaaIXaaaaiaadwgadaWgaaWcbaGaam yAaaqabaGccaWGZbGaey4kaSIae8x9diVaamiuaiaaiIcacaWGZbGa aGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGikaiaaio dacaaIUaGaaGynaiaaiMcaaaa@6EB2@

                                                              e ˙ i =ϵT(s, e i ),(3.6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaaca WaaSbaaSqaaiaadMgaaeqaaOGaaGypamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8x9diVaamivaiaaiIcacaWGZbGaaG ilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGilaiaaiIca caaIZaGaaGOlaiaaiAdacaaIPaaaaa@512A@

где P(s, e i )= pρ+p2ρ (ρ+1) 2 e i s+ pρψ+pψ+p ψ (ρ+1) 2 s 2 pρψ+pψ+p ψ (ρ+1) 2 e i s 2 + ρ (ρ+1) 2 e i 2 s, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGa aGypamaalaaabaGaamiCaiabeg8aYjabgUcaRiaadchacqGHsislca aIYaGaeqyWdihabaGaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaWa aWbaaSqabeaacaaIYaaaaaaakiaadwgadaWgaaWcbaGaamyAaaqaba GccaWGZbGaey4kaSYaaSaaaeaacaWGWbGaeqyWdiNaeqiYdKNaey4k aSIaamiCaiabeI8a5jabgUcaRiaadchaaeaacqaHipqEcaaIOaGaeq yWdiNaey4kaSIaaGymaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGa am4CamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaamiCai abeg8aYjabeI8a5jabgUcaRiaadchacqaHipqEcqGHRaWkcaWGWbaa baGaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaWaaWbaaS qabeaacaaIYaaaaaaakiaadwgadaWgaaWcbaGaamyAaaqabaGccaWG ZbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaHbpGCae aacaaIOaGaeqyWdiNaey4kaSIaaGymaiaaiMcadaahaaWcbeqaaiaa ikdaaaaaaOGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaakiaado hacaaISaaaaa@873B@

  T(s, e i )= pω ψ(ρ+1) s pω ψ(ρ+1) e i s, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGa aGypamaalaaabaGaamiCaiabeM8a3bqaaiabeI8a5jaaiIcacqaHbp GCcqGHRaWkcaaIXaGaaGykaaaacaWGZbGaeyOeI0YaaSaaaeaacaWG WbGaeqyYdChabaGaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdaca aIPaaaaiaadwgadaWgaaWcbaGaamyAaaqabaGccaWGZbGaaGilaaaa @572D@  где медленное инвариантное многообразие MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это:

                                                 ξ ζ =h(s, e i ,ϵ)= h 0 (s, e i )+ϵ h 1 (s, e i )+O( ϵ 2 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaeqOVdGhabaGaeqOTdOhaaaGaayjkaiaawMcaaiaa i2dacaWGObGaaGikaiaadohacaaISaGaamyzamaaBaaaleaacaWGPb aabeaakiaaiYcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbciab=v=aYlaaiMcacaaI9aGaamiAamaaBaaaleaacaaIWaaabe aakiaaiIcacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGc caaIPaGaey4kaSIae8x9diVaamiAamaaBaaaleaacaaIXaaabeaaki aaiIcacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaI PaGaey4kaSIaam4taiaaiIcacqWF1pG8daahaaWcbeqaaiaaikdaaa GccaaIPaGaaGypaaaa@69FC@

                        = e i s+s 0 +ϵ 1+pρ+p ρ+1 s p(ψρ+ψ+1) ψ(ρ+1) s 2 pρ+p+2 ρ+1 s e i + 1 ρ+1 e i 2 s+ p(ψρ+ψ+1) ψ(ρ+1) e i s 2 p ψ(ρ+1) s p ψ(ρ+1) e i s +O( ϵ 2 ).(3.7) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaqbaeqabiqaaaqaaiabgkHiTiaadwgadaWgaaWcbaGaamyAaaqa baGccaWGZbGaey4kaSIaam4CaaqaaiaaicdaaaaacaGLOaGaayzkaa Gaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8daqadaqaauaabeqaceaaaeaadaWcaaqaaiaaigdacqGHRa WkcaWGWbGaeqyWdiNaey4kaSIaamiCaaqaaiabeg8aYjabgUcaRiaa igdaaaGaam4CaiabgkHiTmaalaaabaGaamiCaiaaiIcacqaHipqEcq aHbpGCcqGHRaWkcqaHipqEcqGHRaWkcaaIXaGaaGykaaqaaiabeI8a 5jaaiIcacqaHbpGCcqGHRaWkcaaIXaGaaGykaaaacaWGZbWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaWGWbGaeqyWdiNaey4k aSIaamiCaiabgUcaRiaaikdaaeaacqaHbpGCcqGHRaWkcaaIXaaaai aadohacaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIXaaabaGaeqyWdiNaey4kaSIaaGymaaaacaWGLbWaa0baaSqaai aadMgaaeaacaaIYaaaaOGaam4CaiabgUcaRmaalaaabaGaamiCaiaa iIcacqaHipqEcqaHbpGCcqGHRaWkcqaHipqEcqGHRaWkcaaIXaGaaG ykaaqaaiabeI8a5jaaiIcacqaHbpGCcqGHRaWkcaaIXaGaaGykaaaa caWGLbWaaSbaaSqaaiaadMgaaeqaaOGaam4CamaaCaaaleqabaGaaG OmaaaaaOqaamaalaaabaGaamiCaaqaaiabeI8a5jaaiIcacqaHbpGC cqGHRaWkcaaIXaGaaGykaaaacaWGZbGaeyOeI0YaaSaaaeaacaWGWb aabaGaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaaaaiaa dwgadaWgaaWcbaGaamyAaaqabaGccaWGZbaaaaGaayjkaiaawMcaai abgUcaRiaad+eacaaIOaGae8x9di=aaWbaaSqabeaacaaIYaaaaOGa aGykaiaai6cacaaIOaGaaG4maiaai6cacaaI3aGaaGykaaaa@B885@

Следуя [1; 4], выполним замену переменных в системе (2.9), (2.10) по формулам x=w+ϵH(t,w,z,ϵ),y=h(t,x,ϵ)+z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaWG3bGaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuGacqWF1pG8caWGibGaaGikaiaadshacaaISaGaam4DaiaaiY cacaWG6bGaaGilaiab=v=aYlaaiMcacaaISaGaamyEaiaai2dacaWG ObGaaGikaiaadshacaaISaGaamiEaiaaiYcacqWF1pG8caaIPaGaey 4kaSIaamOEaiaaiYcaaaa@5E90@  где H= H 0 +O(ϵ)= ρ ρ+1 w 1 ρ (1+ρ)ψ + w 1 ψ 0 ω ψ z+O(ϵ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaWGibWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam4taiaaiIca tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYl aaiMcacaaI9aWaaeWaaeaafaqabeGacaaabaWaaSaaaeaacqaHbpGC aeaacqaHbpGCcqGHRaWkcaaIXaaaaaqaaiabgkHiTmaalaaabaGaam 4DamaaBaaaleaacaaIXaaabeaakiabeg8aYbqaaiaaiIcacaaIXaGa ey4kaSIaeqyWdiNaaGykaiabeI8a5baacqGHRaWkdaWcaaqaaiaadE hadaWgaaWcbaGaaGymaaqabaaakeaacqaHipqEaaaabaGaaGimaaqa amaalaaabaGaeqyYdChabaGaeqiYdKhaaaaaaiaawIcacaGLPaaaca WG6bGaey4kaSIaam4taiaaiIcacqWF1pG8caaIPaaaaa@6CD0@  и запишем ее результат:

                                           w ˙ 1 = 1 ρ+1 ϵ p+pρρ (ρ+1) 2 w 1 + 1 ρ+1 w 1 w 2 +ϵP( w 1 , w 2 ),(3.8) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTmaalaaabaGaaGym aaqaaiabeg8aYjabgUcaRiaaigdaaaGaeyOeI0Yefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaadcha cqGHRaWkcaWGWbGaeqyWdiNaeyOeI0IaeqyWdihabaGaaGikaiabeg 8aYjabgUcaRiaaigdacaaIPaWaaWbaaSqabeaacaaIYaaaaaaakiaa dEhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaaigdaae aacqaHbpGCcqGHRaWkcaaIXaaaaiaadEhadaWgaaWcbaGaaGymaaqa baGccaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIae8x9diVaam iuaiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadEha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGilaiaaiIcacaaIZaGaaG OlaiaaiIdacaaIPaaaaa@72FF@

                                                            w ˙ 2 =ϵT( w 1 , w 2 ),(3.9) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaikdaaeqaaOGaaGypamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8x9diVaamivaiaaiIcacaWG3bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaaGilaiaaiIcacaaIZaGaaGOlaiaaiMdacaaIPaaaaa@51E2@

Начальные условия примут вид:

                                                      w 1 (0,ϵ)=1ϵ ρ ρ+1 , w 2 =0.(3.10) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaGykaiaai2daca aIXaGaeyOeI0Iae8x9di=aaSaaaeaacqaHbpGCaeaacqaHbpGCcqGH RaWkcaaIXaaaaiaaiYcacaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaaG ypaiaaicdacaaIUaGaaGikaiaaiodacaaIUaGaaGymaiaaicdacaaI Paaaaa@5BFB@

Получили систему специального вида (3.8), (3.9), описывающую движение по интегральному многообразию, с начальными условиями (3.10).

Для исследования (3.8), (3.9) на устойчивость перепишем систему (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) в виде:

                                                    ds(t) dt =(ϵp+1)s+S(s, e i ,ξ,ζ),(3.11) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaam4CaiaaiIcacaWG0bGaaGykaaqaaiaadsgacaWG0baaaiaa i2dacqGHsislcaaIOaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuGacqWF1pG8caWGWbGaey4kaSIaaGymaiaaiMcacaWGZbGa ey4kaSIaam4uaiaaiIcacaWGZbGaaGilaiaadwgadaWgaaWcbaGaam yAaaqabaGccaaISaGaeqOVdGNaaGilaiabeA7a6jaaiMcacaaISaGa aGikaiaaiodacaaIUaGaaGymaiaaigdacaaIPaaaaa@61A3@

                                                          d e i (t) dt = E i (s, e i ,ξ,ζ),(3.12) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaqaaiaadsgacaWG0baaaiaai2dacaWGfbWaaSbaaSqaaiaadMgaae qaaOGaaGikaiaadohacaaISaGaamyzamaaBaaaleaacaWGPbaabeaa kiaaiYcacqaH+oaEcaaISaGaeqOTdONaaGykaiaaiYcacaaIOaGaaG 4maiaai6cacaaIXaGaaGOmaiaaiMcaaaa@5117@

                                                       ϵ dξ(t) dt =ξ+Ξ(s, e i ,ξ,ζ),(3.13) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH+oaEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aGaeyOeI0IaeqOVdGNaey4kaSIaeuONdGLaaGikaiaadohacaaI SaGaamyzamaaBaaaleaacaWGPbaabeaakiaaiYcacqaH+oaEcaaISa GaeqOTdONaaGykaiaaiYcacaaIOaGaaG4maiaai6cacaaIXaGaaG4m aiaaiMcaaaa@5FF0@

                                                     ϵ dζ(t) dt = ϵp (1+ϵp)(1+ρ) ξψζ,(3.14) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH2oGEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aWaaSaaaeaacqWF1pG8caWGWbaabaGaaGikaiaaigdacqGHRaWk cqWF1pG8caWGWbGaaGykaiaaiIcacaaIXaGaey4kaSIaeqyWdiNaaG ykaaaacqaH+oaEcqGHsislcqaHipqEcqaH2oGEcaaISaGaaGikaiaa iodacaaIUaGaaGymaiaaisdacaaIPaaaaa@659F@

где S(s, e i ,ξ,ζ)=ϵpsξ+(ϵp+1)sζ+(ϵp+1)s e i + ρ 1+ρ ξ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaISaGa eqOVdGNaaGilaiabeA7a6jaaiMcacaaI9aWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGWbGaam4Caiabe67a 4jabgUcaRiaaiIcacqWF1pG8caWGWbGaey4kaSIaaGymaiaaiMcaca WGZbGaeqOTdONaey4kaSIaaGikaiab=v=aYlaadchacqGHRaWkcaaI XaGaaGykaiaadohacaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaS YaaSaaaeaacqaHbpGCaeaacaaIXaGaey4kaSIaeqyWdihaaiabe67a 4jaaiYcaaaa@7031@   E i (s, e i ,ξ,ζ)=ωζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaaiIcacaWGZbGaaGilaiaadwgadaWgaaWc baGaamyAaaqabaGccaaISaGaeqOVdGNaaGilaiabeA7a6jaaiMcaca aI9aGaeqyYdCNaeqOTdOhaaa@4853@   Ξ(s, e i ,ξ,ζ)=(ϵp+1)sϵpsξ(ϵp+1)sζ(ϵp+1)s e i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ikaiaadohacaaISaGaamyzamaaBaaaleaacaWGPbaabeaakiaaiYca cqaH+oaEcaaISaGaeqOTdONaaGykaiaai2dacaaIOaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGWbGaey4k aSIaaGymaiaaiMcacaWGZbGaeyOeI0Iae8x9diVaamiCaiaadohacq aH+oaEcqGHsislcaaIOaGae8x9diVaamiCaiabgUcaRiaaigdacaaI PaGaam4CaiabeA7a6jabgkHiTiaaiIcacqWF1pG8caWGWbGaey4kaS IaaGymaiaaiMcacaWGZbGaamyzamaaBaaaleaacaWGPbaabeaakiaa i6caaaa@716E@  Находим: S(0, e i ,0,0)=0, E i (0, e i ,0,0)=0,Ξ(0, e i ,0,0)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaaIWaGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaISaGa aGimaiaaiYcacaaIWaGaaGykaiaai2dacaaIWaGaaGilaiaadweada WgaaWcbaGaamyAaaqabaGccaaIOaGaaGimaiaaiYcacaWGLbWaaSba aSqaaiaadMgaaeqaaOGaaGilaiaaicdacaaISaGaaGimaiaaiMcaca aI9aGaaGimaiaaiYcacqqHEoawcaaIOaGaaGimaiaaiYcacaWGLbWa aSbaaSqaaiaadMgaaeqaaOGaaGilaiaaicdacaaISaGaaGimaiaaiM cacaaI9aGaaGimaiaai6caaaa@5A41@  Система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) имеет многообразие стационарных положений, а также устойчивое интегральное многообразие (3.7), для которого справедлив обобщенный принцип сведения [4]. Движение по этому многообразию описывается системой дифференциальных уравнений (3.8), (3.9), которая тоже имеет многообразие стационарных положений. Перепишем (3.8), (3.9) в виде:

                                                       w ˙ 1 =K w 1 +S( w 1 , w 2 ,t,ϵ),(3.15) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaadUeacaWG3bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaam4uaiaaiIcacaWG3bWaaSbaaSqaai aaigdaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaamiDaiaaiYcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGqbciab=v=aYlaaiMcacaaISaGaaGikaiaaiodacaaIUaGaaGym aiaaiwdacaaIPaaaaa@589B@

                                                          w ˙ 2 =ϵ E i ( w 1 , w 2 ,t,ϵ)(3.16) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaikdaaeqaaOGaaGypamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8x9diVaamyramaaBaaaleaacaWGPb aabeaakiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa dEhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiDaiaaiYcacqWF1p G8caaIPaGaaGikaiaaiodacaaIUaGaaGymaiaaiAdacaaIPaaaaa@57CD@

где

                                                         K= 1 ρ+1 ϵ p+pρρ (ρ+1) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dacqGHsisldaWcaaqaaiaaigdaaeaacqaHbpGCcqGHRaWkcaaIXaaa aiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8x9di=aaSaaaeaacaWGWbGaey4kaSIaamiCaiabeg8aYjabgkHi Tiabeg8aYbqaaiaaiIcacqaHbpGCcqGHRaWkcaaIXaGaaGykamaaCa aaleqabaGaaGOmaaaaaaGccaaISaaaaa@594F@

                       S( w 1 , w 2 ,t,ϵ)= 1 ρ+1 w 1 w 2 +ϵ pρ+p2ρ (ρ+1) 2 w 1 w 2 +ϵ pρψ+pψ+p ψ (ρ+1) 2 w 1 2 ϵ pρψ+pψ+p ψ (ρ+1) 2 w 1 2 w 2 +ϵ ρ (ρ+1) 2 w 1 w 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadEhadaWgaaWc baGaaGOmaaqabaGccaaISaGaamiDaiaaiYcatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlaaiMcacaaI9aWaaSaa aeaacaaIXaaabaGaeqyWdiNaey4kaSIaaGymaaaacaWG3bWaaSbaaS qaaiaaigdaaeqaaOGaam4DamaaBaaaleaacaaIYaaabeaakiabgUca Riab=v=aYpaalaaabaGaamiCaiabeg8aYjabgUcaRiaadchacqGHsi slcaaIYaGaeqyWdihabaGaaGikaiabeg8aYjabgUcaRiaaigdacaaI PaWaaWbaaSqabeaacaaIYaaaaaaakiaadEhadaWgaaWcbaGaaGymaa qabaGccaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIae8x9di=a aSaaaeaacaWGWbGaeqyWdiNaeqiYdKNaey4kaSIaamiCaiabeI8a5j abgUcaRiaadchaaeaacqaHipqEcaaIOaGaeqyWdiNaey4kaSIaaGym aiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaam4DamaaDaaaleaaca aIXaaabaGaaGOmaaaakiabgkHiTiab=v=aYpaalaaabaGaamiCaiab eg8aYjabeI8a5jabgUcaRiaadchacqaHipqEcqGHRaWkcaWGWbaaba GaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaWaaWbaaSqa beaacaaIYaaaaaaakiaadEhadaqhaaWcbaGaaGymaaqaaiaaikdaaa GccaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIae8x9di=aaSaa aeaacqaHbpGCaeaacaaIOaGaeqyWdiNaey4kaSIaaGymaiaaiMcada ahaaWcbeqaaiaaikdaaaaaaOGaam4DamaaBaaaleaacaaIXaaabeaa kiaadEhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaISaaaaa@AC1C@

                                                 E i ( w 1 , w 2 ,t,ϵ)=ϵ pω ψ(ρ+1) w 1 pω ψ(ρ+1) w 1 w 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiDai aaiYcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab =v=aYlaaiMcacaaI9aGae8x9di=aaeWaaeaadaWcaaqaaiaadchacq aHjpWDaeaacqaHipqEcaaIOaGaeqyWdiNaey4kaSIaaGymaiaaiMca aaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaam iCaiabeM8a3bqaaiabeI8a5jaaiIcacqaHbpGCcqGHRaWkcaaIXaGa aGykaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaam4DamaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaiaai6caaaa@6D3B@

Согласно [4], многообразие стационарных положений устойчиво по отношению к переменным e i ,ξ,η,ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaakiaaiYcacqaH+oaEcaaISaGaeq4TdGMaaGil aiabeA7a6baa@4163@  в том и только в том случае, если устойчиво по отношению к переменной w 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaaaaa@39EA@ , а на это влияет коэффициент K= 1 ρ+1 ϵ p+ρ(p1) (ρ+1) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dacqGHsisldaWcaaqaaiaaigdaaeaacqaHbpGCcqGHRaWkcaaIXaaa aiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8x9di=aaSaaaeaacaWGWbGaey4kaSIaeqyWdiNaaGikaiaadcha cqGHsislcaaIXaGaaGykaaqaaiaaiIcacqaHbpGCcqGHRaWkcaaIXa GaaGykamaaCaaaleqabaGaaGOmaaaaaaGccaaIUaaaaa@59B1@  Так как k i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaaaaa@3A11@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициенты скоростей реакций, ρ= k 1 k 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypamaalaaabaGaam4AamaaBaaaleaacqGHsislcaaIXaaabeaaaOqa aiaadUgadaWgaaWcbaGaaGOmaaqabaaaaOGaaGOpaiaaicdaaaa@40D0@ , а ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8aaa@4402@  малый положительный параметр, K<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiY dacaaIWaaaaa@3A57@  и решение уравнения (3.15) устойчиво относительно w 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaaaaa@39EA@ . Отсюда следует, что многообразие стационарных положений устойчиво относительно w 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaaaaa@39EA@  и решение (3.8), (3.9) устойчиво.

4 Пример и численное сравнение решений

 Пусть в исходной системе (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) ρ= 1 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypamaalaaabaGaaGymaaqaaiaaiodaaaaaaa@3C16@ , σ= 1 16 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ypamaalaaabaGaaGymaaqaaiaaigdacaaI2aaaaaaa@3CD7@ , ψ= 3 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ypamaalaaabaGaaG4maaqaaiaaisdaaaaaaa@3C27@ , ω= 1 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaG ypamaalaaabaGaaGymaaqaaiaaiIdaaaaaaa@3C28@ , p=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacaaIXaaaaa@3A7E@ . После применения вышеописанных методов и подстановки коэффициентов система на интегральном многообразии примет вид:

                                         w ˙ 1 =( w 2 1)( 15 9 w 1 3 25 9 w 1 2 + 5 9 w 2 w 1 2 +2 w 1 1 4 ), w 1 (0,ϵ)=1ϵ 1 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaiIcacaWG3bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaaGymaiaaiMcacaaIOaWaaSaaaeaaca aIXaGaaGynaaqaaiaaiMdaaaGaam4DamaaDaaaleaacaaIXaaabaGa aG4maaaakiabgkHiTmaalaaabaGaaGOmaiaaiwdaaeaacaaI5aaaai aadEhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkdaWcaaqa aiaaiwdaaeaacaaI5aaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGcca WG3bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaa dEhadaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiaaigdaae aacaaI0aaaaiaaiMcacaaISaGaam4DamaaBaaaleaacaaIXaaabeaa kiaaiIcacaaIWaGaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfiGae8x9diVaaGykaiaai2dacaaIXaGaeyOeI0Iae8x9 di=aaSaaaeaacaaIXaaabaGaaGinaaaacaaISaaaaa@719E@

                                                         w ˙ 2 = w 1 ( w 2 1) 8 , w 2 (0,ϵ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaikdaaeqaaOGaaGypamaalaaabaGaeyOeI0Iaam4D amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG3bWaaSbaaSqaaiaaik daaeqaaOGaeyOeI0IaaGymaiaaiMcaaeaacaaI4aaaaiaaiYcacaWG 3bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaISaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaIPaGa aGypaiaaicdacaaIUaaaaa@5719@

Рисунки 4.1, 4.2 отображают численные сравнения решений исходной и конечной систем, то есть до преобразований и после применения методов, при значении малого параметра ϵ=0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaI9aGaaGim aiaai6cacaaIXaaaaa@46F6@ .

  

Figure 1: Сравнение решений для первого уравнения задачи до и после построения интегрального многообразия при ϵ=0,1

Fig. 4.1. Comparison of solutions for the first equation of the problem before and after constructing the integral varieties for ϵ=0,1

 

Figure 2: Сравнение решений для второго уравнения задачи до и после построения интегрального многообразия при ϵ=0,1

Fig. 4.2. Comparison of solutions for the second equation of the problem before and after constructing the integral varieties for ϵ=0,1

  

Заключение

 Данная статья включает в себя применение методов декомпозиции и интегральных многообразий к модели из второго случая, описанного в фундаментальной монографии Mathematical Biology. Метод декомпозиции сокращает размерность исходной системы, метод интегральных многообразий вводит так называемые многообразия, существенно упрощающие сложность вычислительных операций. Сравнение численных решений задач при значении малого параметра ϵ=0,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaI9aGaaGim aiaaiYcacaaIXaaaaa@46F4@ =0,1 приводится графически.

×

Об авторах

Михаил Андреевич Сметанников

Самарский национальный исследовательский университет имени академика С.П. Королева

Автор, ответственный за переписку.
Email: ssmetannikoff@gmail.com

аспирант кафедры дифференциальных уравнений и теории управления

Россия, г. Самара

Список литературы

  1. Соболев В.А., Щепакина Е.А. Редукция моделей и критические явления в макрокинетике. Москва: ФИЗМАТЛИТ, 2010. 320 с. URL: https://elibrary.ru/item.asp?id=21326259. EDN: https://elibrary.ru/ryrtfh.
  2. Murray J.D. Mathematical Biology I. An Introduction. New York: Springer. 2001. 551 p. DOI: https://doi.org/10.1007/b98868.
  3. Воропаева Н.В., Соболев В.А. Геометрическая декомпозиция сингулярно возмущенных систем. Москва: ФИЗМАТЛИТ, 2009. 256 с. URL: https://elibrary.ru/item.asp?id=15211477. EDN: https://elibrary.ru/muwrwb.
  4. Стрыгин В.В., Соболев В.А. Разделение движений методом интегральных многообразий. Москва: Наука, 1988. 256 c. URL: https://elibrary.ru/item.asp?id=30130147. EDN: https://elibrary.ru/zjiugb.
  5. Гольдштейн В.М., Соболев В.А. Качественный анализ сингулярно возмущённых систем. Новосибирск: Ин-т математики АН СССР, Сиб. отд-ние, 1988. 154 с. URL: https://elibrary.ru/item.asp?id=48397980. EDN: https://elibrary.ru/ruopbm.
  6. Щепакина Е.А. Интегральные многообразия, траектории-утки и тепловой взрыв // Вестник Самарского государственного университета. 1995. Спец. вып. С. 10–19.
  7. Shchepakina E., Sobolev V. Integral manifolds, canards and black swans // Nonlinear Analysis: Theory, Methods & Applications. 2001. Vol. 44, Issue 7. Pp. 897–908. DOI: https://doi.org/10.1016/S0362-546X(99)00312-0.
  8. Sobolev V.A. Integral manifolds and decomposition of singulary perturbed system // Systems & Control Letters. 1984. Vol. 5, Issue 3. Pp. 169–179. DOI: https://doi.org/10.1016/S0167-6911(84)80099-7.
  9. Митропольский Ю.А., Лыкова О.Б. Интегральные многообразия в нелинейной механике. Москва: Наука, 1973. 512 с. URL: https://reallib.org/reader?file=789024&ysclid=lnslze77hh615738.
  10. Knobloch H.-W., Aulbach B. Singular perturbations and integral manifolds // Journal of Mathematical and Physical Sciences. 1984. Vol. 18, Issue 5. Pp. 415–424. URL: https://zbmath.org/0587.34044.
  11. Seiler N., Jung M.J., Koch-Weser J. Enzyme-activated Irreversible Inhibitors. Amsterdam: Elsevier/North-Holland, 1978. 426 p.
  12. Walsh C.T. Suicide substrates, mechanism-based enzyme inactivators: recent developments. // Annual Review of Biochemistry. 1984. Vol. 53. Pp. 493–535. DOI: https://doi.org/10.1146/annurev.bi.53.070184.002425.
  13. Berding C., Keymer A.E., Murray J.D., Slater A.F.G. The population dynamics of acquired immunity to helminth infections // Journal of Theoretical Biology, 1986, vol. 122, issue 4, pp. 459–471. DOI: https://doi.org/10.1016/S0022-5193(86)80186-2.
  14. Бобылев Н.А., Емельянов С.В., Коровин С.К. Геометрические методы в вариационных задачах. Москва: Магистр, 1998. 658 с.
  15. Емельянов С.В., Коровин С.К., Мамедов И.Г. Структурные преобразования и пространственная декомпозиция дискретных регулируемых систем – метод квазирасщепления // Техническая кибернетика, 1986. № 6, C. 118–128.
  16. Коровин С.К., Мамедов И.Г., Мамедова А.П. Равномерная по малому параметру устойчивость и стабилизация дискретных сингулярно возмущенных динамических систем // Техническая кибернетика, 1989. № 1. С. 21–29.
  17. Тихонов А.Н. Системы дифференциальных уравнений, содержащие малые параметры при производных // Математ. сборник (новая серия). 1952. Т. 31 (73). С. 575–586. URL: https://www.mathnet.ru/rus/sm5548.
  18. Задирака К.В. О нелокальном интегральном многообразии нерегулярно возмущенной дифференциальной системы // Украинский математический журнал. 1965. Т. 17, № 1. С. 47–63.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Figure 1: Сравнение решений для первого уравнения задачи до и после построения интегрального многообразия при

Скачать (51KB)
3. Figure 2: Сравнение решений для второго уравнения задачи до и после построения интегрального многообразия при

Скачать (53KB)

© Сметанников М.А., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).