Влияние сорбционных свойств калийных солей на газовую обстановку в тупиковых горных выработках

Обложка

Цитировать

Полный текст

Аннотация

Результаты газовоздушных съемок, выполняемых на рудниках Верхнекамского месторождения калийных и магниевых солей, показывают, что объем газообразных примесей, фиксируемый в главных вентиляционных штреках рудника, зачастую значительно меньше, чем в рабочих зонах тупиковых выработок. Феномен снижения газовых примесей по пути движения вентиляционной струи воздуха на калийных рудниках во многих исследованиях связывают не только с разбавлением вредных примесей утечками свежего воздуха с воздухоподающих штреков, но и с нейтрализацией газов за счет их химических реакций с калийным массивом. Результаты исследований, проведенных ранее в лабораторных условиях, показали, что сильвинит (NaCl + KCl) способен поглощать примеси токсичных и горючих газов. На основе результатов лабораторного изучения в рамках настоящей работы проведены исследования в условиях реального рудника, учитывающие динамику газовых примесей в атмосфере горных выработок и фактор разбавления газовых примесей утечками воздуха. В рамках работы выполнены замеры концентрации горючих и токсичных газов на продуктивных пластах разного минерального состава на одном из рудников ВМКМС для оценки влияния свойств калийных солей на газовый баланс в тупиковых выработках большой протяженности. Выполнен анализ степени влияния свойств калийного массива на изменение концентрации горючих и токсичных газов в выработках по пути движения вентиляционной струи воздуха. Анализ отобранных образцов воздуха проводился в лабораторных условиях. Концентрация горючих газов, оксида и диоксида углерода, содержащихся в отобранных образцах воздуха, производилась хроматографическим методом на приборе «ХРОМОС ГХ-1000». Оценена доля влияния нейтрализации газа и разбавления утечками вентиляционного трубопровода на снижение количества горючих и токсичных газов в исходящей из рабочей зоны струе воздуха. В результате проведенных экспериментов установлено, что в протяженных тупиковых камерах пласта АБ (100 м и более) количество газовых примесей снижается по протяженности выработки от тупика к устью. При проведении исследований учтены факторы, способные повлиять на снижение концентрации газа в рабочей зоне.

Об авторах

А. Н. Стариков

Пермский федеральный исследовательский центр УрО РАН; Горный институт УрО РАН

Email: starikov4488@mail.ru
ORCID iD: 0000-0001-9352-5612
SPIN-код: 2584-4890

С. В. Мальцев

Горный институт УрО РАН

ORCID iD: 0009-0002-9887-1455

А. Е. Суханов

Горный институт УрО РАН

ORCID iD: 0009-0002-7960-8344

Список литературы

  1. Кузьминых Е. Г., Левин Л. Ю., Мальцев С. В. Распределение продуктов выхлопных газов техники с двигателями внутреннего сгорания в шахтной вентиляционной сети. Горное эхо. 2023;(2):96–103. https://doi.org/10.7242/echo.2023.2.17
  2. Трушкова Н. А. Исследование газового состава рудничного воздуха для оценки возможности применения рециркуляционного проветривания. Горное эхо. 2019;(3):84–87. https://doi.org/10.7242/echo.2019.3.23
  3. Медведев И. И., Красноштейн А. Е. Аэрология калийных рудников. Свердловск: АН СССР; 1990. С. 119–126.
  4. Баранников В. Г., Красноштейн А. Е., Папулов Л. М. и др. Спелеотерапия в калийном руднике. Екатеринбург: Изд-во УроРАН; 1996. Т. 173.
  5. Puławska A., Manecki M., Flasza M. et al. Origin, distribution, and perspective health benefits of particulate matter in the air of underground salt mine: a case study from Bochnia, Poland. Environmental Geochemistry and Health. 2021;43(9):3533–3556. https://doi.org/10.1007/s10653-021-00832-2
  6. Calin M., Zoran M., Calin M. Radon levels assessment in some Northern Romanian salt mines. Journal of Radioanalytical and Nuclear Chemistry. 2012;293(2):565–572. https://doi.org/10.1007/s10967-012-1686-1
  7. Yao N., Chen J., Feng R. et al. Mechanistic understanding of adsorption of low concentrations of N-nitrosodiethylamine in water by functional MIL-96: experiments and theoretical calculations. Chemical Engineering Journal. 2022;451(3):138761. https://doi.org/10.1016/j.cej.2022.138761
  8. Yang D., Peng X., Peng Q. et al. Probing the interfacial forces and surface interaction mechanisms in petroleum production processes. Engineering. 2022;18:49–61. https://doi.org/10.1016/j.eng.2022.06.012
  9. Суханов А. Е., Бруев Н. А., Газизуллин Р. Р., Стариков А. Н. Исследование сорбционных свойств солей на примере газов, содержащихся в атмосфере калийных рудников. Известия Тульского государственного университета. Известия Тульского государственного университета. Науки о земле. 2023;(1):495–507. https://doi.org/10.46689/2218-5194-2023-1-1-495-507
  10. Кузнецова Ю. Л. Эволюция размера растворимой аэрозольной частицы во влажном воздухе. Вычислительная механика сплошных сред. 2022;15(1):31–44. https://doi.org/10.7242/1999-6691/2022.15.1.3
  11. Баранников В. Г., Черешнев В. А. Гигиеническая оценка процессов самоочищения воздуха в калийном руднике. В: Проблемы безопасности при эксплуатации месторождений полезных ископаемых в зонах градопромышленных агломераций: тезисы докладов Международного симпозиума. М., Пермь; 1995. С. 12–13.
  12. Исаевич А. Г., Стариков А. Н., Мальцев С. В. Совершенствование метода отбора проб воздуха для определения относительной газообильности горючих газов в рудничной атмосфере. Горный информационно-аналитический бюллетень. 2021;(4):143–153. https://doi.org/10.25018/0236_1493_2021_4_0_143
  13. Норина Н. В., Исаевич А. Г. Разработка методов и технических средств нейтрализации серосодержащих соединений в атмосфере калийных рудников. Известия Тульского государственного университета. Науки о земле. 2021;(4):550–557.
  14. Сметанников А. Ф., Филиппов В. Н. Некоторые особенности минерального состава соляных пород и продуктов их переработки (на примере Верхнекамского месторождения солей). Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П. Н. Чирвинского. 2010;13:99–113.
  15. Земсков А. Н., Лискова М. Ю. Особенности формирование компонентного состава газов калийных месторождений. Известия Тульского государственного университета. Науки о земле. 2019;(2):88–97.
  16. Газизуллин Р. Р., Исаевич А. Г., Левин Л. Ю. Численное моделирование процессов выноса вредных примесей рудничной атмосферы при проветривании тупиковых выработок различными способами. Научные исследования и инновации. 2011;5(2):127–129.
  17. Красноштейн А. Е. Физико-химический механизм в процессе адсорбции ядовитых примесей рудничной атмосферы калийными солями. Пермь: Пермский политехнический ин-т.; 1977.
  18. Zhu X., Wen H. Numerical simulation study on the influence of air leakage on oxygen concentration in goafs of fully mechanized caving mining with shallow buried and large mining height. Frontiers in Earth Science. 2023;11:1138925. https://doi.org/10.3389/feart.2023.1138925

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».