Борьба с инфляцией оценок: концентрированные наборы данных для исправления грамматических ошибок
- Авторы: Старченко В.1, Харламова Д.1, Клыкова Е.2, Шаврина А.1, Старченко А.1, Виноградова О.2, Ляшевская О.1,3
-
Учреждения:
- НИУ ВШЭ
- независимый исследователь
- Институт русского языка имени В. В. Виноградова РАН
- Выпуск: Том 10, № 4 (2024)
- Страницы: 112-129
- Раздел: Оригинальное исследование
- URL: https://ogarev-online.ru/2411-7390/article/view/356613
- DOI: https://doi.org/10.17323/jle.2024.22272
- ID: 356613
Цитировать
Аннотация
Цель: Решить проблему предела разрешения в GEC. Предлагаемый подход заключается в использовании для оценки концентрированных наборов данных с более высокой плотностью ошибок, с которыми современным системам GEC трудно справиться.
Метод: Чтобы проверить предлагаемое решение, мы рассмотрим ошибки, чувствительные к удаленному контексту, которые были признаны сложными для систем GEC. Мы создаем концентрированный набор данных для английского языка с более высокой плотностью ошибок различных типов, наполовину вручную объединяя предварительно аннотированные примеры из четырех существующих наборов данных и дополнительно расширяя аннотацию ошибок, чувствительных к удаленному контексту. Две системы GEC оцениваются с использованием этого набора данных, включая традиционные алгоритмы оценки и новый подход, модифицированный для более длинных контекстов.
Результаты: концентрированный набор данных включает 1014 примеров, отобранных вручную из FCE, CoNLL-2014, BEA-2019 и REALEC. Он аннотирован для типов контекстно-зависимых ошибок, таких как местоимения, время глагола, пунктуация, референтные связки и слова-связки. Системы GEC показывают более низкие баллы при оценке на наборе данных с более высокой плотностью сложных ошибок по сравнению со случайным набором данных с другими теми же параметрами.
Вывод: Более низкие баллы, зарегистрированные на концентрированных наборах данных, подтверждают, что они предоставляют возможность для будущего улучшения моделей GEC. Набор данных можно использовать для дальнейших исследований, сосредоточенных на GEC, чувствительном к удаленному контексту.
Об авторах
Владимир Старченко
НИУ ВШЭ
Email: vmstarchenko@edu.hse.ru
ORCID iD: 0009-0004-6638-9124
Москва, Россия
Дарья Харламова
НИУ ВШЭ
Email: dasha.kh18@gmail.com
ORCID iD: 0009-0007-5747-9525
Москва, Россия
Елизавета Клыкова
независимый исследователь
Email: lizaklyk@gmail.com
ORCID iD: 0009-0005-9160-2553
Анастасия Шаврина
НИУ ВШЭ
Email: shavrina8@yandex.ru
ORCID iD: 0009-0002-2435-7314
Москва, Россия
Алексей Старченко
НИУ ВШЭ
Email: aleksey-starchenko@mail.ru
ORCID iD: 0000-0003-1650-7597
Москва, Россия
Ольга Виноградова
независимый исследователь
Email: olgavinogr@gmail.com
ORCID iD: 0000-0001-5928-1482
Ольга Ляшевская
НИУ ВШЭ; Институт русского языка имени В. В. Виноградова РАН
Email: olesar@yandex.ru
ORCID iD: 0000-0001-8374-423X
Москва, Россия; Москва, Россия
Список литературы
- Bentley, J. (1985). Programming pearls: A spelling checker.Communications of the ACM, 28(5), 456-462. DOI:https://doi.org/10.1145/3532.315102
- Brockett, C., Dolan, B., & Gamon, M. (2006). Correcting ESL errors using phrasal SMT techniques. 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL (pp. 249-256). Association for Computational Linguistics. DOI:https://doi.org/10.3115/1220175.1220207
- Bryant, C., Felice, M., Andersen, Ø. E., & Briscoe, T. (2019). The BEA-2019 shared task on grammatical error correction. Proceedings of the fourteenth workshop on innovative use of NLP for building educational applications (pp. 52-75). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/W19-4406
- Bryant, C., Felice, M., & Briscoe, T. (2017). Automatic annotation and evaluation of error types for grammatical error correction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers, pp. 793-805). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/P17-1074
- Bryant, C., Yuan, Z., Qorib, M. R., Cao, H., Ng, H. T., & Briscoe, T. (2023). Grammatical error correction: A survey of the state of the art.Computational Linguistics, 49(3), 643-701. DOI:https://doi.org/10.1162/coli_a_00478
- Bryant, C., & Ng, H. T. (2015). How far are we from fully automatic high quality grammatical error correction? Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (vol. 1: Long Papers, pp. 697-707). Association for Computational Linguistics. DOI:https://doi.org/10.3115/v1/P15-1068
- Burstein, J., Chodorow, M., & Leacock, C. (2003). CriterionSM online essay evaluation: An application for automated evaluation of student essays. Proceedings of the Fifteenth Conference on Innovative Applications of Artificial Intelligence (pp. 3-10).American Association for Artificial Intelligence.
- Cargill, T. A. (1980). The design of a spelling checker's user interface. ACM SIGOA Newsletter, 1(3), 3-4. DOI:https://doi.org/10.1145/1017923.1017924
- Chollampatt, S., & Ng, H. T. (2018). A multilayer convolutional encoder-decoder neural network for grammatical error correction. Proceedings of the AAAI conference on artificial intelligence (vol. 32(1), pp. 5755-5762). Association for the Advancement of Artificial Intelligence. DOI:https://doi.org/10.1609/aaai.v32i1.12069
- Chollampatt, S., Wang, W., & Ng, H. T. (2019). Cross-sentence grammatical error correction. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 435-445). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/P19-1042
- Dahlmeier, D., & Ng, H. T. (2011). Grammatical error correction with alternating structure optimization. Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 915-923). Association for Computational Linguistics.
- Dahlmeier, D., Ng, H. T., & Wu, S. M. (2013). Building a large annotated corpus of learner English: The NUS corpus of learner English. Proceedings of the eighth workshop on innovative use of NLP for building educational applications (pp. 22-31). Association for Computational Linguistics.
- Dale, R., Anisimoff, I., & Narroway, G. (2012). HOO 2012: A report on the preposition and determiner error correction shared task. Proceedings of the Seventh Workshop on Building Educational Applications Using NLP (pp. 54-62). Association for Computational Linguistics.
- Du, Z., & Hashimoto, K. (2023). Sentence-level revision with neural reinforcement learning. Proceedings of the 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023) (pp. 202-209). Association for Computational Linguistics.
- Grundkiewicz, R., Junczys-Dowmunt, M., & Gillian, E. (2015). Human evaluation of grammatical error correction systems. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 461-470). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/D15-1052
- Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). Understanding back-translation at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 489-500). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/D18-1045
- Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378-382. DOI:https://doi.org/10.1037/h0031619
- Jensen, K., Heidorn, G., Miller, L., & Ravin, Y. (1993). Parse fitting and prose fixing. Natural Language Processing: The PLNLP Approach (pp. 53-64). Springer. DOI:https://doi.org/10.1007/978-1-4615-3170-8_5
- Katsumata, S., & Komachi, M. (2020). Stronger baselines for grammatical error correction using a pretrained encoder-decoder model. Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing (pp. 827-832). Association for Computational Linguistics.
- Krippendorff, K. (2011).Computing Krippendorff's Alpha-Reliability.https://repository.upenn.edu/asc_papers/43.
- Kwasny, S. C., & Sondheimer, N. K. (1981). Relaxation techniques for parsing grammatically ill-formed input in natural language understanding systems. American Journal of Computational Linguistics, 7(2), 99-108.
- Lee, J. S. (2004). Automatic article restoration. Proceedings of the Student Research Workshop at HLT-NAACL 2004 (pp. 31-36). Association for Computational Linguistics.
- Nangia, N., Vania, C., Bhalerao, R., & Bowman, S. (2020). CrowS-Pairs: A challenge dataset for measuring social biases in masked language models. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1953-1967). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/2020.emnlp-main.154
- Omelianchuk, K., Atrasevych, V., Chernodub, A., & Skurzhanskyi, O. (2020). GECToR-Grammatical Error Correction: Tag, not Rewrite. Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 163-170). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/2020.bea-1.16
- Leacock, C., Gamon, M., & Brockett, C. (2009). User input and interactions on Microsoft Research ESL assistant. Proceedings of the Fourth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 73-81). Association for Computational Linguistics.
- Leacock, C., Chodorow, M., Gamon, M., & Tetreault, J. (2014). Automated grammatical error detection for language learners (2nd ed.). Morgan & Claypool Publishers. DOI:https://doi.org/10.1007/978-3-031-02153-4
- Li, W., & Wang, H. (2024). Detection-correction structure via general language model for grammatical error correction. arXiv preprint arXiv:2405.17804. DOI:https://doi.org/10.48550/arXiv.2405.17804
- Marzi, G., Balzano, M., & Marchiori, D. (2024). K-Alpha Calculator-Krippendorff's Alpha Calculator: A user-friendly tool for computing Krippendorff's Alpha inter-rater reliability coefficient. Methods X, 12, 102545. DOI:https://doi.org/10.1016/j.mex.2023.102545
- Napoles, C., Sakaguchi, K., Post, M., & Tetreault, J. (2015). Ground truth for grammatical error correction metrics. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol. 2: Short Papers, pp. 588-593). Association for Computational Linguistics. DOI:https://doi.org/10.3115/v1/P15-2097
- Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., & Bryant, C. (2014). The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the eighteenth conference on computational natural language learning: Shared task (pp. 1-14). Association for Computational Linguistics. DOI:https://doi.org/10.3115/v1/W14-1701
- Qorib, M. R., & Ng, H. T. (2022). Grammatical error correction: Are we there yet? In Proceedings of the 29th International Conference on Computational Linguistics (pp. 2794-2800).International Committee on Computational Linguistics.
- Randolph, J. J. (2005). Free-marginal multirater kappa (multirater K[free]): An alternative to fleiss' fixed-marginal multirater kappa. Presented at the Joensuu Learning and Instruction Symposium 2005 (October 14-15, 2005).http://files.eric.ed.gov/fulltext/ED490661.pdf.
- Rothe, S., Mallinson, J., Malmi, E., Krause, S., & Severyn, A. (2021). A simple recipe for multilingual grammatical error correction. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (vol. 2: Short Papers, pp. 702-707). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/2021.acl-short.89
- Rozovskaya, A., & Roth, D. (2010). Training paradigms for correcting errors in grammar and usage. Human language technologies: The 2010 annual conference of the north american chapter of the association for computational linguistics (pp. 154-162). Association for Computational Linguistics.
- Rozovskaya, A. & Roth, D., (2021). How good (really) are grammatical error correction systems? Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (pp. 2686-2698). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/2021.eacl-main.231
- Sakaguchi, K., Napoles, C., Post, M., & Tetreault, J. (2016). Reassessing the goals of grammatical error correction: Fluency instead of grammaticality. Transactions of the Association for Computational Linguistics, 4, 169-182. DOI:https://doi.org/10.18653/v1/P18-1020
- Starchenko, V. M., & Starchenko, A. M. (2023). Here we go again: modern GEC models need help with spelling. Proceedings of ISP RAS, 35(5), 215-228. DOI:https://doi.org/10.15514/ISPRAS-2022-35(5)-14
- Starchenko, V. M. (2024). No need to get wasteful: The way to train a lightweight competitive spelling checker.Computación y Sistemas, 28(3), 1-12. DOI:https://doi.org/10.13053/CyS-28-4-5068
- Vinogradova, O., & Lyashevskaya, O. (2022). Review of practices of collecting and annotating texts in the learner corpus REALEC.International Conference on Text, Speech, and Dialogue (pp. 77-88). Springer International Publishing. DOI:https://doi.org/10.1007/978-3-031-16270-1_7
- Volodina, E., Bryant, C., Caines, A., De Clercq, O., Frey, J., Ershova, E., Rosen, A., & Vinogradova, O. (2023). MultiGED-2023 shared task at NLP4CALL: Multilingual grammatical error detection. Linköping Electronic Conference Proceedings (pp. 1-16). LiU Electronic Press. DOI:https://doi.org/10.3384/ecp197001
- Wang, C., Li, R., & Lin, H. (2017). Deep context model for grammatical error correction. SLaTE (pp. 167-171).International Speech Communication Association. DOI:https://doi.org/10.21437/SLaTE.2017-29
- Wang, Y., Xia, Y., He, T., Tian, F., Qin, T., Zhai, C., & Liu, T. Y. (2019). Multi-agent dual learning. Proceedings of the International Conference on Learning Representations (ICLR).International Conference on Learning Representations.
- Wang, Y., Wang, Y., Dang, K., Liu, J., & Liu, Z. (2021). A comprehensive survey of grammatical error correction. ACM Transactions on Intelligent Systems and Technology, 12(5), 1-51. DOI:https://doi.org/10.1145/3474840
- Warrens, M. J. (2010). Inequalities between multi-rater kappas. Advances in Data Analysis and Classification, 4(4), 271-286. DOI:https://doi.org/10.1007/s11634-010-0073-4
- Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., & Ng, A. Y. (2016). Neural language correction with character-based attention. arXiv preprint arXiv:1603.09727. DOI:https://doi.org/10.48550/arXiv.1603.09727
- Yannakoudakis, H., Briscoe, T., & Medlock, B. (2011). A new dataset and method for automatically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (pp. 180-189). Association for Computational Linguistics.
- Yuan, Z., & Bryant, C. (2021). Document-level grammatical error correction. Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications (pp. 75-84). Association for Computational Linguistics.
- Yuan, Z., & Felice, M. (2013). Constrained grammatical error correction using statistical machine translation. Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task (pp. 52-61). Association for Computational Linguistics.
- Yuan, Z., Briscoe, T., & Felice, M. (2016). Candidate re-ranking for SMT-based grammatical error correction. Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications (pp. 256-266). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/W16-0530
- Zeng, M., Kuang, J., Qiu, M., Song, J. and Park, J. (2024). Evaluating prompting strategies for grammatical error correction based on language proficiency. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 6426-6430). ELRA and ICCL. DOI:https://doi.org/10.48550/arXiv.2402.15930
- Zhang, Y., Zhang, B., Li, Z., Bao, Z., Li, C., & Zhang, M. (2022). SynGEC: Syntax-enhanced grammatical error correction with a tailored GEC-oriented parser. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 2518-2531). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/2022.emnlp-main.162
- Zhao, J., Fang, M., Pan, S., Yin, W., & Pechenizkiy, M. (2023). GPTBIAS: A comprehensive framework for evaluating bias in large language models. arXiv preprint arXiv:2312.06315. DOI:https://doi.org/10.48550/arXiv.2312.06315
- Zhou, H., Liu, Y., Li, Z., Zhang, M., Zhang, B., Li, C., Zhang, J., & Huang, F. (2023). Improving Seq2Seq grammatical error correction via decoding interventions. Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 7393-7405). Association for Computational Linguistics. DOI:https://doi.org/10.18653/v1/2023.findings-emnlp.495
Дополнительные файлы



