Акторное моделирование когнитивных систем реального времени: онтологическое обоснование и программно-математическая реализация

Обложка

Цитировать

Полный текст

Аннотация

Статья посвящена исследованию проблемы повышения достоверности моделирования когнитивных систем, к которым авторы относят не только человеческий интеллект, но и системы искусственного интеллекта, а также интеллектуальные системы управления производствами, технологическими процессами и сложным оборудованием. Показано, что использование когнитивных систем для решения задач управления обуславливает для них очень высокие требования по быстродействию. Эти требования в сочетании с необходимостью упрощения методов моделирования по мере усложнения объекта моделирования обуславливают выбор подхода к моделированию когнитивных систем. Модели должны основываться на использовании простейших алгоритмов в виде определения трендов, корреляции, а также (для решения интеллектуальных задач) – на использовании алгоритмов, основанных на применении различных паттернов форм и законов. Кроме того, модели должны быть децентрализованными. Адекватное представление децентрализованных систем, образованных из большого числа автономных элементов, может быть сформировано в рамках агент-ориентированных моделей. Для когнитивных систем наиболее проработанными являются две программно-математические реализации агент-ориентированной модели: акторная и реакторная. Акторные модели когнитивных систем имеют два возможных варианта реализации: в виде инструментальной модели, либо в виде симуляции. Обе реализации имеют право на существование, однако возможности реализации достоверного описания при использовании инструментальной модели выше, поскольку она обеспечивает несоизмеримо более высокое быстродействие, а также предполагает вариативность моделируемой реальности, обусловленной неполнотой предполагаемой модели. Модель акторов может быть реализована средствами большого числа существующих языков программирования, как специальных акторно-ориентированных, функциональных, так и языков общего назначения. Решение задачи создания симулятивных акторных моделей доступно на большинстве языков, работающих с акторами. Реализация инструментальных акторных моделей требует быстродействия, недостижимого при императивном программировании. В этом случае оптимальным решением является использование акторного метапрограммирования. Во многих существующих языках такое программирование реализуемо.

Об авторах

Александр Александрович Зеленский

Научно-производственный комплекс "Технологический центр"

Email: zelenskyaa@gmail.com
ORCID iD: 0000-0002-3464-538X
ведущий научный сотрудник;

Андрей Армович Грибков

Научно-производственный комплекс "Технологический центр"

Email: andarmo@yandex.ru
ORCID iD: 0000-0002-9734-105X
ведущий научный сотрудник;

Список литературы

  1. Философия: Энциклопедический словарь / Под ред. А.А. Ивина. М.: Гардарики, 2004. 1072 с.
  2. Микрюков А.А. Когнитивные технологии в системах поддержки принятия решений в цифровой экономике // Инновации и инвестиции, 2018, №6, с. 127-131.
  3. Зеленский А.А., Грибков А.А. Онтологические аспекты проблемы реализуемости управления сложными системами // Философская мысль, 2023, №12, с. 21-31.
  4. Грибков А.А. Эмпирико-метафизический подход к построению общей теории систем // Общество: философия, история, культура, 2023, №4, с. 14-21.
  5. Грибков А.А. Определение вторичных законов и свойств объектов в общей теории систем. Часть 1. Методологический подход на основе классификации объектов // Контекст и рефлексия: философия о мире и человеке, 2023, том 12, №5-6A, с. 17-30.
  6. Заде Л.А. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: «Мир», 1976. 165 с.
  7. Грибков А.А. Определение вторичных законов и свойств объектов в общей теории систем. Часть 2. Методологический подход на основе классификации паттернов // Контекст и рефлексия: философия о мире и человеке, 2023, том 12, №9A, с. 5-15.
  8. Малявкина Л.И., Думчина О.А., Саввина Е.В. Методы и техники анализа больших данных (Big Data) // Инфраструктура цифрового развития образования и бизнеса: Сборник научных трудов национальной научно-практической конференции, Орел, 01-30 апреля 2021 года. Орёл: Орловский государственный университет экономики и торговли, 2021, с. 34-39.
  9. Duin R.P.W. The Origin of Patterns // Frontiers in Computer Science, November 2021, vol. 3, article 747195.
  10. Бурилина М.А., Ахмадеев Б.А. Анализ многообразия архитектур и методов моделирования децентрализованных систем на основе агент-ориентированного подхода // Креативная экономика, 2016, т. 10, №7, с. 829-848.
  11. Railsback S.F., Grimm V. Agent-Based and Individual-Based Modeling: A Practical Introduction, Second Edition. Princeton University Press, 2019. 360 p.
  12. Burgin M. Systems, Actors and Agents: Operation in a multicomponent environment. 2017, 28 p. URL: arXiv:1711.08319.
  13. Rinaldi L., Torquati M., Mencagli G., Danelutto M., Menga T. Accelerating Actor-based Applications with Parallel Patterns // 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing. 2019, pp. 140-147.
  14. Shah V., Vaz Salles M.A. Reactors: A case for predictable, virtualized actor database systems // International Conference on Management of Data. 2018, pp. 259-274.
  15. Lohstroh М., Menard С., Bateni S., Lee E. Toward a Lingua Franca for Deterministic Concurrent Systems // ACM Transactions on Embedded Computing Systems. 2021. Vol. 20. No. 4, pp. 1-27.
  16. Хорошевский В.Г. Распределённые вычислительные системы с программируемой структурой // Вестник СибГУТИ, 2010, №2, с. 3-41.
  17. Грибков А.А., Зеленский А.А. Определение сознания, самосознания и субъектности в рамках информационной концепции // Философия и культура, 2023, №12, с. 1-14.
  18. Зеленский А.А., Илюхин Ю.В., Грибков А.А. Память-центрические модели систем управления движением промышленных роботов // Вестник Московского авиационного института, 2021, т. 28, №4, с. 245-256.
  19. Федоров А. Квантовые вычисления: от науки к приложениям // Открытые системы. СУБД, 2019, №3, с. 14.
  20. Batko P., Kuta M. Actor model of Anemone functional language // The Journal of Supercomputing. 2018, Vol. 74, pp. 1485-1496.
  21. Скрипкин С.К., Ворожцова Т.Н. Современные методы метапрограммирования и их распределенные системы технологии разработки перспективы // Вестник ИрГТУ, 2006, №2 (26), с. 90-97.
  22. Neuendorffer S. Actor-Oriented Metaprogramming. PhD Thesis, University of California, Berkeley, December 21, 2004. URL: https://ptolemy.berkeley.edu/publications/papers/04/StevesThesis/
  23. Зеленский А.А., Ивановский С.П., Илюхин Ю.В., Грибков А.А. Программирование доверенной память-центрической системы управления движением робототехнических и мехатронных систем // Вестник Московского авиационного института, 2022, т. 29, № 4, с. 197-210.
  24. Каляев И., Заборовский В. Искусственный интеллект: от метафоры к техническим решениям // Control Engineering Россия, 2019, №5 (83), с. 26-31.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).