Attitude motion of a nanosatellite with a movable module on a rail platform during gravity-gradient stabilization process

封面

如何引用文章

全文:

详细

The dynamics of the angular motion of a nanosatellite with a moving unit sliding on a rail platform relative to the main body is considered. The trajectory motion of the center of mass of a nanosatellite is considered as motion in a circular orbit. Sliding of the moving unit in the transverse direction changes the location of the center of mass and the magnitude of the moments of inertia of the system. It is assumed that the sliding of the unit occurs in the presence of friction forces, and can also be performed in accordance with the selected control laws. The presence of internal friction allows performing the dissipation of kinetic energy, and interaction with the external gravitational field ensures the release of the kinetic momentum. This makes it possible the transition of the nanosatellite to a position of stable gravitational equilibrium in the orbital coordinate system. Controlling the position of the unit increases the rate of transition to the gravitational equilibrium position.

作者简介

Anton Doroshin

Samara National Research University

Email: doran@inbox.ru
ORCID iD: 0000-0001-6310-0963
Scopus 作者 ID: 8680082900

Doctor of Science (D.Sc. in Physics and Mathematics), Head of the Theoretical Mechanics Department

俄罗斯联邦, Samara

Alexandr Eremenko

Samara National Research University

编辑信件的主要联系方式.
Email: cfyzxiii@gmail.com
ORCID iD: 0000-0002-2102-3602
Scopus 作者 ID: 57208773280

Postgraduate Student of the Theoretical Mechanics Department

俄罗斯联邦, Samara

参考

  1. Beletsky, V. V. (1975), Dvizhenie Sputnika Otnositel’no Tsentra Mass v Gravitatsionnom Pole [Satellite Motion Relative to the Center of Mass in a Gravitational Field], Mosk. Gos. Univ, Moscow, Russia. (In Russian).
  2. Ashenberg, J. and Lorenzini, E. C. (1999), “Active gravity-gradient stabilization of a satellite in elliptic orbits”, Acta Astronautica, vol. 45 (10), pp. 619-627.
  3. Doroshin, A. V. and Eremenko, A. V. (2024), “Attitude dynamics of a dual-spin nanosatellite with a gravitational damper”, Advances in Space Research, no. 73, pp. 3166–3178, https://doi.org/10.1016/j.asr.2023.12.063.
  4. Doroshin, A. V. (2022), “Gravitational Dampers for Unloading Angular Momentum of Nanosatellites”, In: Lacarbonara W., Balachandran B., Leamy M.J., Ma J., Tenreiro Machado J.A., Stepan G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham, pp. 257-266. DOI: https://doi.org/10.1007/978-3-030-81162-4_23
  5. Aslanov, V. S. and Doroshin, A. V. (2023), “The Dynamics of Small Satellites with a Three-Axial Gravitational Damper”, Prikladnaya Matematika i Mekhanika, vol. 87, no. 5, pp. 729–741. (In Russian).
  6. 6. Chernous’ko, F. L. (1968), “Motion of a Solid with Cavities Containing a Viscous Fluid”,Vych. Tsent. SSSR Akad. Nauk, Moscow, 1968(In Russian).
  7. Amelkin, N. I. and Kholoshchak, V. V.(2017), “Stability of the steady rotations of a satellite with internal damping in a central gravitational field”, Journal of Applied Mathematics and Mechanics, vol. 81, no. 2, pp. 85-94.
  8. Ovchinnikov, M. Y. and Roldugin, D. S. (2020), “A survey on active magnetic attitude control algorithms for small satellites”, Progress in Aerospace Sciences, vol. 109, doi: 10.1016/j.paerosci.2019.05.006.
  9. Arduini, C. and Baiocco, P. (1997), “Active magnetic damping attitude control for gravity gradient stabilized spacecraft”, Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 117-122.
  10. Nobari, N. A. and Misra, A. K. (2012), “Attitude dynamics and control of satellites with fluid ring actuators”, Journal of Guidance, Control, and Dynamics, vol. 35, no. 6, pp. 1855-1864, doi: 10.2514/1.54599.
  11. Kumar, K. D. (2004), “Satellite attitude stabilization using fluid rings”, Acta Mechanica, no. 208(1-2), pp. 117-131.
  12. Sandfry, R. A. and Hall, C. D. (2004), “Steady spins and spinup dynamics of axisymmetric dual-spin satellites with dampers”, Journal of spacecraft and rockets, no. 41(6), pp. 948-955.
  13. Ayoubi, M. A., Goodarzi, F. A. and Banerjee, A. (2011), “Attitude motion of a spinning spacecraft with fuel sloshing and nutation damping”, The Journal of the Astronautical Sciences, no. 58(4), pp. 551-568.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Doroshin A.V., Eremenko A.V., 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).