Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr2O3–SiO2–Fe2O3–CaO–Al2O3–MgO–CuO

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследуются методы получения керамических материалов на основе системы Cr2O3—SiO2—Fe2O3—CaO—Al2O3—MgO—CuO, способных генерировать модулированное импульсное излучение в дальней инфракрасной области спектра. Рассматривается возможность синтеза такой керамики помимо гелиотехнологии с применением термомеханической обработки и механоактивации исходных карбонатов. Проведен комплексный анализ структуры и свойств полученных материалов с применением рентгеноструктурного, электронного микроскопического анализа и других методов. Установлено, что активация импульсным инфракрасным излучением, генерируемым по принципу импульсного туннельного эффекта (ИТЭ) приводит к изменениям микроструктуры образцов, сопровождающимся формированием метастабильных фаз на границах раздела и генерацией излучения.

Об авторах

Рустам Хакимович Рахимов

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Автор, ответственный за переписку.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN-код: 3026-2619

доктор технических наук, заведующий, лаборатория № 1

Узбекистан, г. Ташкент

Владимир Васильевич Паньков

Белорусский государственный университет

Email: pankovbsu@gmail.com
ORCID iD: 0000-0001-5478-0194

доктор химических наук, профессор

Белоруссия, г. Минск

Темур Садганиевич Саидвалиев

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: t.saidvaliyev@imssolar.uz
ORCID iD: 0009-0008-6473-9214

главный инженер

Узбекистан, г. Ташкент

Список литературы

  1. Рахимов РХ., Ермаков В.П., Рахимов М.Р. Фононный механизм преобразования в керамических материалах // Computational Nanotechnology. 2017. № 4. C. 21–35.
  2. Рахимов Р.Х. Большая солнечная печь // Computational Nanotechnology. 2019. № 2. С. 141–150.
  3. Рахимов Р. Патент США № US 5.707.911, 13.01.1999.
  4. Рахимов Р. Патент США № US 6.200.501 В1, 13.03.2001.
  5. Рашидов Ж.Х. Российский патент «Способ обогащения каолинового сырья и устройство для его реализации». Заявка № 2020128986. Приоритет изобретения 1 сентября 2020 Г. Дата регистрации 19 мая 2021 Г.
  6. Рахимов Р.Х., Горлач Р.С., Паньков В.В., Ермаков В.П. Масштабируемый метод получения нанокомпозитов для устройств генерации импульсного излучения дальнего инфракрасного диапазона // Порошковая металлургия. 1988. № 11. С. 36–41.
  7. Паньков В.В., Ивашенко Д.В. Новые методы модифицированной керамической технологии для синтеза функциональных наноструктурированных систем // Computational Nanotechnology. 2021. Т. 8. № 2. С. 18–23. doi: 10.33693/2313-223X-2021-8-2-18-23.
  8. Рахимов Р.Х., Паньков В.В., Ермаков В.П. И др. Фотокатализаторы на основе функциональной керамики // Гелиотехника. 2023.
  9. Башкиров Л.А., Паньков В.В., Летюк Л.М. И др. Механизм образования Mn—Zn ферритов в условиях термовибропомола // Механоэмиссия и механохимия твердых тел: матер. Всесоюзного симпозиума. Ростов-Н/Д., 1986. С. 15–16.
  10. Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Разработка метода получения керамических нанокомпозиты с использованием элементов золь–гель технологии для создания вкраплений аморфных фаз с составом, аналогичным целевой кристаллической керамической матрице // Computational Nanotechnology. 2022. Т. 9. № 3. С. 60–67. doi: 10.33693/2313-223X-2022-9-3-60-67
  11. Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Исследование свойств функциональной керамики синтезированной модифицированным карбонатным методом // Computational Nanotechnology. 2023. Т. 10. № 3. C. 130–143. doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
  12. Panmv V.V. Modified aerosol synthesis of nanostmctured hexaferrite for magnetic media // J. Aerosol Sci. 1995. Vol. 26. No. 1. Pp. 5813–5814.
  13. Рахимов Р.Х. Керамические материалы и ИХ применение. Дюссельдорф: Lambert, 2022. Т. 1: Разработка функциональной керамики с комплексом заданных СВОЙСТВ. 257 c.; Т. 2: Видимый и невидимый свет. 202 c.; Т. 3: Видимый и невидимый свет. 391 c.
  14. Рахимов Р.Х., Паньков В.В., Ермаков В.П., Махнач Л.В. Производительные методы повышения эффективности протекания промежуточных реакций при синтезе функциональной керамики // Computational nanotechnology. 2024. Т. 11. № 1. С. 224–234. doi: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
  15. Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics // Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313- 223X-2023-10-3-26-34. EDN: QZQMCA.
  16. Рахимов Р.Х., Ермаков В.П. Перспективы солнечной энергетики: роль современных гелиотехнологий в производстве водорода // Computational Nanotechnology. 2023. Т. 10. № 3. C. 11–25. doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  17. Рахимов Р.Х. Импульсный туннельный эффект: фундаментальные основы и перспективы применения // Computational nanotechnology. 2024. Т. 11. № 1. С. 193–213. doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
  18. Paizullakhanov M.S., Akbarov R.Y. Approaches to simulation of interaction of concentrated solar radiation with materials // Journal of Siberian Federal University. Engineering & Technologies. 2021. NO. 14 (3). Pp. 354–358. doi: 10.17516/1999-494X-0316
  19. Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Разработка метода получения керамических нанкомпозитов с использованием элементов золь–гель технологии для создания вкраплений аморфных фаз с составом, аналогичным целевой кристаллической керамической матрице // Computational Nanotechnology. 2022. Т. 9. № 3. С. 60–67. doi: 10.33693/2313-223X-2022-9-3-60-67

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Спектры рентгеновской дифракции для образцов до (а) и после (b) активации

Скачать (38KB)
3. Рис. 2. Фрагменты спектров рентгеновской дифракции для образцов до активации – верхний спектр и после активации – нижний спектр

Скачать (22KB)
4. Рис. 3. Микрофотографии образцов до (а) и после (b) активации

Скачать (528KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».