Алгоритмическое обеспечение спектральной обработки кардиограмм

Обложка

Цитировать

Полный текст

Аннотация

Метод регистрации электрокардиограмм, как неинвазивный метод исследования, широко применяется в современной функциональной диагностике. Развиваются спектральные методы диагностики, основанные на преобразовании Фурье и вейвлет-преобразовании. Для целей идентификации нарушений сердечного ритма методом исследования выбран спектральный (частотный) анализ кратковременных записей ЭКГ, вплоть до одного периода сердечных сокращений. Проведено разложение в ряд Фурье на одном периоде кардиосигнала в EDF-формате. Определено, что максимальная точность описания кардиосигнала достигается при числе гармоник, равном половине числа точек дискретизации кардиосигнала в течение периода. Корректность работы разработанного для спектрального анализа скрипта проверялась восстановлением кардиосигнала по его спектру и сравнением с исходным сигналом. Установлена корреляция спектра и формы кардиосигнала. Сделан вывод о применимости метода спектрального анализа для идентификации нарушений сердечного ритма, а также о возможности использования спектра электрических сигналов сердечных сокращений как многомерной функции состояния сердца. Указано направление дальнейшего выявления закономерностей путем статистического анализа с интерпретацией результатов профильными специалистами. Теоретическая и практическая ценность настоящего исследования заключается как в определении направлений применения спектрального анализа кардиосигнала для диагностики и лечения, так и в полученных практических результатах, которые могут быть применены при разработке экспертной системы или конкретного технического устройства.

Об авторах

Денис Анатольевич Андриков

Российский университет дружбы народов

Email: andrikovdenis@mail.ru
ORCID iD: 0000-0003-0359-0897
SPIN-код: 8247-7310

кандидат технических наук, доцент кафедры механики процессов и управления, инженерная академия

Москва, Россия

Синан Владимирович Курбанов

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: ya.sinan@yandex.ru
ORCID iD: 0009-0005-6632-9102

аспирант кафедры механики и процессов управления, инженерная академия

Москва, Россия

Список литературы

  1. Drozd DD. Basics of application of mathematical models in cardiology. Bulletin of Medical Internet Con- ferences. 2015;5(9):1140–1142. (In Russ.) EDN: ULQVAL
  2. Kiselev IN, Semisalov BV, Biberdorf EA, Shari- pov RN, Blokhin AM, Kolpakov FA. Modular modeling of the human cardiovascular system. Mathematical Biology and Bioinformatics. 2012;7(2):703–736. (In Russ.) https://doi.org/10.17537/2012.7.703
  3. Lebedenko IS, Novoselova ES, Rakityanskaya AS, Efimceva YA. Pump function mathematical model of heart. Biotechnosphere. 2009;3:24–31. (In Russ.) EDN: KWTXFP
  4. Karpov OE, Khramov AE, Andrikov DA, Gu- sev AV, Zarubina TV, Nikolaidi YeN, Penzin OV, Rauzina SYe, Subbotin SA. Information technologies, computing systems and artificial intelligence in medicine. Moscow: DPK Press; 2022. (In Russ.) https://doi.org/10.56463/l6504-7059-3414-n
  5. Qian T, Zhang L, Li Z. Algorithm of Adaptive Fourier Decomposition. IEEE Transactions on Signal Processing. 2011;59:5899–5906.
  6. Zakharov SM, Znaiko GG. Spectral analysis of electrocardiosignals. Questions of radio electronics. 2017;3:110–115. (In Russ.) EDN: YFYKID
  7. Sergeychik OI. Models and algorithms for spectral analysis of processing cardiac time series (abstract of the dissertation for the degree of Candidate of Technical Sciences). 2007. (In Russ.) EDN: NIPEIL
  8. Genlang C, Zhiqing H, Yongjuan G, Chaoyi P. A cascaded classifier for multi-lead ECG based on feature fusion. Computer Methods and Programs in Biomedicine. 2019;178:135–143. https://doi.org/10.1016/j.cmpb.2019.06.021
  9. Sun J. Automatic cardiac arrhythmias classification using CNN and attention-based RNN network. Healthcare Technology Letters. 2023;10(138):53–61. https://doi.org/10.1049/htl2.12045
  10. Snezhitsky VA, Shishko VI, Zukhovitskaya EV, Deshko MS. Heart rate variability: applications in cardiology. Grodno: GrSMU; 2010. (In Russ.) EDN: WMBLHV
  11. Baevsky RM, Chernikova AG. Heart rate variability analysis: physiologic foundations and main methods. Cardiometry. 2017;10:66–76. EDN: YPOTMP
  12. Latfullin IA, Kim ZF, Teptin GM, Mammadova LE. High-resolution ECG: from present to future. Russian Journal of Cardiology. 2010;2(82):29–34. (In Russ.) EDN: LPAGQV
  13. Grinevich AA, Chemeris NK. Spectral analysis of heart rate variability based on the Hilbert–Huang method. Doklady Biochemistry and Biophysics. 2023;511(1): 169–172. https://doi.org/10.1134/s1607672923700333
  14. Moskalenko AV, Makhortykh SA. On spectral analysis of the regulation of the main cardiac rhythm. Proceedings of the International Conference “Mathematical Biology and Bioinformatics”. Pushchino: IMPB. 2022; 9:e41. (In Russ.) https://doi.org/10.17537/icmbb22.13
  15. Cerutti S, Bianchi AM, Mainardi LT, Signo- rini MG. Spectral Analysis of Cardiovascular Variability Signals. In: Vardas PE (eds.) Cardiac Arrhythmias, Pacing & Electrophysiology. Developments in Cardiovascular Medicine Springer, Dordrecht. 1998;201:171–183. https://doi.org/10.1007/978-94-011-5254-9_25
  16. Marple JrSL, Carey WM. Digital spectral analysis with applications. The Journal of the Acoustical Society of America. 1989;86(5). https://doi.org/10.1121/1.3985481989
  17. Rauscher C. Fundamentals of Spectrum Analysis. München: Rohde & Schwarz Publ.; 2001. Available from: https://archive.org/details/fundamentalsofsp0000raus (accessed: 15. 03.2024)
  18. Sawant N, Patidar S. Diagnosis of Cardiac Abnormalities Applying Scattering Transform and FourierBessel Expansion on ECG Signals. 2021 Computing in Cardiology (CinC). Brno, Czech Republic, 2021. https:// doi.org/10.23919/CinC53138.2021.9662751
  19. Alvarez-Estevez D. European Data Format. Avail- able at: https://www.edfplus.info (accessed: 15.03.2024)
  20. Karpov OE, Khramov AE. Predictive medicine. Medical doctor and IT. 2021;3:20–37. (In Russ.) https://doi.org/10.25881/18110193_2021_3_20

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).