Role of Gene Polymorphisms in the Development of Aseptic Loosening of Knee and Hip Prostheses: A Review

封面

如何引用文章

全文:

详细

Background. Aseptic loosening is a significant issue in the endoprosthetics of major joints of the lower limbs. In the modern view, aseptic loosening of joint prostheses is primarily caused by prolonged inflammation, which induces periprosthetic osteolysis. Various factors, such as sex, age, activity level, and others, can influence the development of periprosthetic osteolysis and aseptic loosening. Some researchers attribute to the factors gene polymorphisms related to inflammation, bone metabolism, and other processes. Understanding the connection between specific genetic markers and the development of endoprosthetic complications can provide deeper insights into the mechanisms of periprosthetic osteolysis and aseptic loosening, as well as allow for better prediction of complications in patients.

The aim of the study — based on a literature review, to identify the role of individual genetic traits in the development of periprosthetic osteolysis and aseptic loosening of joint prostheses.

Methods. The search for original studies was conducted in the PubMed, Google Scholar, and eLIBRARY databases using the following keywords: endoprosthetics, genetics, aseptic loosening, polymorphism. Relevance to the research topic was verified by titles and abstracts of the articles, followed by analysis of the full-text versions. Papers with no access to the full text were not assessed.

Results. Polymorphisms in genes regulating inflammation, bone metabolism, differentiation, apoptosis, and cell division processes can influence the development of aseptic loosening. Among such genes are IL1B, IL6, RANK, OPG, FRZB, and others. Data from genome-wide association studies are contradictory and may suggest that genetic factors influencing aseptic loosening can differ among various populations.

Conclusions. Individual genetic traits might play a significant role in the development of periprosthetic osteolysis and aseptic loosening of joint prostheses. Although several studies have identified genetic polymorphisms that presumably influence the development of loosening, further research is needed to verify these results and assess the possibility of extrapolating the findings to other populations.

作者简介

Alexandr Kamenskiy

Russian University of Medicine

编辑信件的主要联系方式.
Email: alexkamenskiyvm@yandex.ru
ORCID iD: 0009-0007-3489-3555
俄罗斯联邦, Moscow

Alexandra Don'kina

Pirogov Russian National Research Medical University

Email: alexandradonkina@yandex.ru
ORCID iD: 0009-0002-0919-211X
俄罗斯联邦, Moscow

Yuri Parakhin

Semashko Railroad Clinical Hospital of JSC Russian Railways

Email: parachinyuri@mail.ru
ORCID iD: 0009-0000-2591-0949

Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Olga Kovtun

Pirogov Russian National Research Medical University; N.N. Blokhin National Medical Research Center of Oncology

Email: miss.olga.kovtun@gmail.com
ORCID iD: 0009-0002-0274-0670
俄罗斯联邦, Moscow; Moscow

Mikhail Parshikov

Russian University of Medicine

Email: parshikovmikhail@gmail.com
ORCID iD: 0000-0003-4201-4577

Dr. Sci. (Med.), Professor

俄罗斯联邦, Moscow

参考

  1. Schwartz A.M., Farley K.X., Guild G.N., Bradbury T.L. Projections and Epidemiology of Revision Hip and Knee Arthroplasty in the United States to 2030. J Arthroplasty. 2020;35(6):79-85. doi: 10.1016/j.arth.2020.02.030.
  2. Jones M.D., Buckle C.L. How does aseptic loosening occur and how can we prevent it? Orthop Trauma. 2020;34(3):146-152. doi: 10.1016/j.mporth.2020.03.008.
  3. Gallo J., Goodman S.B., Konttinen Y.T., Wimmer M.A., Holinka M. Osteolysis around total knee arthroplasty: A review of pathogenetic mechanisms. Acta Biomater. 2013;9(9):8046-8058. doi: 10.1016/j.actbio.2013.05.005.
  4. Goldring S.R., Schiller A.L., Roelke M., Rourke C.M., O’Neil D.A., Harris W.H. The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg Am. 1983;65(5):575-584.
  5. Willert H.G., Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11(2):157-164. doi: 10.1002/jbm.820110202.
  6. Tuan R.S., Lee F.Y.I., Konttinen Y.T., Wilkinson M.J., Smith R.L. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg. 2008;16:42-48. doi: 10.5435/00124635-200800001-00010.
  7. Zhu Y., Chiu K., Tang W. Review Article: Polyethylene Wear and Osteolysis in Total Hip Arthroplasty. J Orthop Surg. 2001;9(1):91-99. doi: 10.1177/230949900100900117.
  8. Cristofolini L. Critical Examination of Stress Shielding Evaluation of Hip Prostheses. Crit Rev Biomed Eng. 2017;45(1-6):549-623. doi: 10.1615/CritRevBiomedEng.v45.i1-6.190.
  9. Münch H.J., Jacobsen S.S., Olesen J.T., Menné T., Søballe K., Johansen J.D. et al. The association between metal allergy, total knee arthroplasty, and revision. Acta Orthop. 2015;86(3):378-383. doi: 10.3109/17453674.2014.999614.
  10. Fahlgren A., Bostrom M.P., Yang X., Johansson L., Edlund U., Agholme F. et al. Fluid pressure and flow as a cause of bone resorption. Acta Orthop. 2010;81(4):508-516. doi: 10.3109/17453674.2010.504610.
  11. Noordin S., Masri B. Periprosthetic osteolysis: Genetics, mechanisms and potential therapeutic interventions. Canadian J Surg. 2012;55(6):408-417. doi: 10.1503/cjs.003711.
  12. Balasubramanian H., Ananthan A., Rao S., Patole S. Odds ratio vs risk ratio in randomized controlled trials. Postgrad Med. 2015;127(4):359-367. doi: 10.1080/00325481.2015.1022494.
  13. López-Anglada E., Collazos J., Montes A.H., Pérez-Is L., Pérez-Hevia I., Jiménez-Tostado S. et al. IL-1β gene (+3954 C/T, exon 5, rs1143634) and NOS2 (exon 22) polymorphisms associate with early aseptic loosening of arthroplasties. Sci Rep. 2022;12(1):18382. doi: 10.1038/s41598-022-22693-0.
  14. Gallo J., Mrazek F., Petrek M. Variation in cytokine genes can contribute to severity of acetabular osteolysis and risk for revision in patients with ABG 1 total hip arthroplasty: A genetic association study. BMC Med Genet. 2009;10:109. doi: 10.1186/1471-2350-10-109.
  15. Gordon A., Kiss-Toth E., Stockley I., Eastell R., Wilkinson J.M. Polymorphisms in the interleukin-1 receptor antagonist and interleukin-6 genes affect risk of osteolysis in patients with total hip arthroplasty. Arthritis Rheum. 2008;58(10):3157-3165. doi: 10.1002/art.23863.
  16. Kolundžić R., Orlić D., Trkulja V., Pavelić K., Trošelj K.G. Single nucleotide polymorphisms in the interleukin-6 gene promoter, tumor necrosis factor-α gene promoter, and transforming growth factor-β1 gene signal sequence as predictors of time to onset of aseptic loosening after total hip arthroplasty: Preliminary study. J Orthop Sci. 2006;11(6):592-600. doi: 10.1007/s00776-006-1069-y.
  17. Malik M.H., Jury F., Bayat A., Ollier W.E., Kay P.R. Genetic susceptibility to total hip arthroplasty failure: A preliminary study on the influence of matrix metalloproteinase 1, interleukin 6 polymorphisms and vitamin D receptor. Ann Rheum Dis. 2007; 66(8):1116-1120. doi: 10.1136/ard.2006.062018.
  18. Fields J.K., Günther S., Sundberg E.J. Structural basis of IL-1 family cytokine signaling. Front Immunol. 2019;10:1412. doi: 10.3389/fimmu.2019.01412.
  19. Dinarello C.A., Simon A., Van Der Meer J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633-652. doi: 10.1038/nrd3800.
  20. Kusano K., Miyaura C., Inada M., Tamura T., Ito A., Nagase H. et al. Regulation of Matrix Metalloproteinases (MMP-2, -3, -9, and -13) by Interleukin-1 and Interleukin-6 in Mouse Calvaria: Association of MMP Induction with Bone Resorption. Endocrinology. 1998;139(3):1338-1345. doi: 10.1210/endo.139.3.5818.
  21. Gowen M., Wood D.D., Ihrie E.J., McGuire M.K.B., Russell R.G.G. An interleukin 1 like factor stimulates bone resorption in vitro. Nature. 1983;306(5941):378-380. doi: 10.1038/306378a0.
  22. Akatsu T., Takahashi N., Udagawa N., Imamura K., Yamaguchi A., Sato K. et al. Role of prostaglandins in interleukin‐1‐induced bone resorption in mice in vitro. J Bone Mineral Res. 1991;6(2):183-190. doi: 10.1002/jbmr.5650060212.
  23. Spolski R., Li P., Leonard W.J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648-659. doi: 10.1038/s41577-018-0046-y.
  24. Wang X., Lupardus P., LaPorte S.L., Garcia K.C. Structural biology of shared cytokine receptors. Annu Rev Immunol. 2009;27:29-60. doi: 10.1146/annurev.immunol.24.021605.090616.
  25. Liao W., Lin J.X., Leonard W.J. Interleukin-2 at the Crossroads of Effector Responses, Tolerance, and Immunotherapy. Immunity. 2013;38(1):13-25. doi: 10.1016/j.immuni.2013.01.004.
  26. Saleh K.J., Holtzman J., Gafni A., Saleh L., Davis A., Resig S. et al. Reliability and intraoperative validity of preoperative assessment of standardized plain radiographs in predicting bone loss at revision hip surgery. J Bone Joint Surg Am. 2001;83(7):1040-1046. doi: 10.2106/00004623-200107000-00009.
  27. Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Müller-Newen G., Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374(1):1-20. doi: 10.1042/bj20030407.
  28. Kaur S., Bansal Y., Kumar R., Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020;28(5):115327. doi: 10.1016/j.bmc.2020.115327.
  29. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448-457. doi: 10.1038/ni.3153.
  30. Ishimi Y., Miyaura C., Jin C.H., Akatsu T., Abe E., Nakamura Y. et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297-3303.
  31. Gordon A., Southam L., Loughlin J., Wilson A.G., Stockley I., Hamer A.J. et al. Variation in the secreted frizzled-related protein-3 gene and risk of osteolysis and heterotopic ossification after total hip arthroplasty. J Orthop Res. 2007;25(12):1665-1670. doi: 10.1002/jor.20446.
  32. MacInnes S.J., Del Vescovo E., Kiss-Toth E., Ollier W.E., Kay P.R., Gordon A. et al. Genetic variation in inflammatory and bone turnover pathways and risk of osteolytic responses to prosthetic materials. J Orthop Res. 2015;33(2):193-198. doi: 10.1002/jor.22755.
  33. Wedemeyer C., Kauther M.D., Hanenkamp S., Nückel H., Bau M., Siffert W. et al. BCL2-938C>A and CALCA-1786T>C polymorphisms in aseptic loosened total hip arthroplasty. Eur J Med Res. 2009;14(6):250. doi: 10.1186/2047-783X-14-6-250.
  34. Aydin-Yüce T., Kurscheid G., Bachmann H.S., Gehrke T., Dudda M., Jäger M. et al. No Association of CALCA Polymorphisms and Aseptic Loosening after Primary Total Hip Arthroplasty. Biomed Res Int. 2018;2018:3687415. doi: 10.1155/2018/3687415.
  35. Malik M.H., Bayat A., Jury F., Ollier W.E., Kay P.R. Genetic susceptibility to hip arthroplasty failure - Association with the RANK/OPG pathway. Int Orthop. 2006;30(3):177-181. doi: 10.1007/s00264-006-0074-2.
  36. Kovács B., Vajda E., Nagy E.E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci. 2019;20(18):4653. doi: 10.3390/ijms20184653.
  37. Li Y., Toraldo G., Li A., Yang X., Zhang H., Qian W.P. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839-3848. doi: 10.1182/blood-2006-07-037994.
  38. Baron R., Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179-192. doi: 10.1038/nm.3074.
  39. Jiao Z., Chai H., Wang S., Sun C., Huang Q., Xu W. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis. J Mol Med. 2023;101(5):607-620. doi: 10.1007/s00109-023-02319-2.
  40. Derynck R., Budi E.H. Specificity, versatility, and control of TGF-b family signaling. Sci Signal. 2019;12(570):5183. doi: 10.1126/scisignal.aav5183.
  41. Konttinen Y.T., Waris V., Xu J.W., Jiranek W.A., Sorsa T., Virtanen I. et al. Transforming growth factor-beta 1 and 2 in the synovial-like interface membrane between implant and bone in loosening of total hip arthroplasty. J Rheumatol. 1997;24(4):694-701.
  42. Stelmach P., Wedemeyer C., Fuest L., Kurscheid G., Gehrke T., Klenke S. et al. The BCL2-938C>A promoter polymorphism is associated with risk for and time to aseptic loosening of total hip arthroplasty. PLoS One. 2016;11(2):e0149528. doi: 10.1371/journal.pone.0149528.
  43. Mrazek F., Gallo J., Stahelova A., Petrek M. Functional variants of the P2RX7 gene, aseptic osteolysis, and revision of the total hip arthroplasty: A preliminary study. Hum Immunol. 2010;71(2):201-205. doi: 10.1016/j.humimm.2009.10.013.
  44. Wilkinson J.M., Wilson A.G., Stockley I., Scott I.R., Macdonald D.A., Hamer A.J. et al. Variation in the TNF Gene Promoter and Risk of Osteolysis After Total Hip Arthroplasty. J Bone Miner Res. 2003;18(11):1995-2001. doi: 10.1359/jbmr.2003.18.11.1995.
  45. Mavčič B., Antolič V., Dolžan V. Association of NLRP3 and CARD8 Inflammasome Polymorphisms With Aseptic Loosening After Primary Total Hip Arthroplasty. J Orthop Res. 2020;38(2):417-421. doi: 10.1002/jor.24474.
  46. Yan Y., Hu J., Lu H., Wang W. Genetic susceptibility to total hip arthroplasty failure: A case-control study on the influence of MMP 1 gene polymorphism. Diagn Pathol. 2014;9(1):177. doi: 10.1186/s13000-014-0177-9.
  47. Pan F., Hua S., Luo Y., Yin D., Ma Z. Genetic susceptibility of early aseptic loosening after total hip arthroplasty: The influence of TIMP-1 gene polymorphism on Chinese Han population. J Orthop Surg Res. 2014;9(1):108. doi: 10.1186/s13018-014-0108-1.
  48. Malik M.H., Bayat A., Jury F., Kay P.R., Ollier W.E. Genetic Susceptibility to Total Hip Arthroplasty Failure-Positive Association With Mannose-Binding Lectin. J Arthroplasty. 2007;22(2):265-270. doi: 10.1016/j.arth.2006.02.163.
  49. Hu J., Van den Steen P.E., Sang Q.X.A., Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6(6):480-498. doi: 10.1038/nrd2308.
  50. Murphy G., Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2009;29(5):290-308. doi: 10.1016/j.mam.2008.05.002.
  51. Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562-573. doi: 10.1016/j.cardiores.2005.12.002.
  52. Takei I., Takagi M., Santavirta S., Ida H., Ishii M., Ogino T. et al. Messenger ribonucleic acid expression of 16 matrix metalloproteinases in bone-implant interface tissues of loose artificial hip joints. J Biomed Mater Res. 2000;52(4):613-620. doi: 10.1002/1097-4636(20001215)52:4<613::AID-JBM5 >3.0.CO;2-8.
  53. Sasaki K., Takagi M., Mandelin J., Takei I., Santavirta S., Ida H. et al. Quantitative analysis of mRNA expression of TIMPs in the periprosthetic interface tissue of loose hips by real-time PCR system. J Biomed Mater Res. 2001;58(6):605-612. doi: 10.1002/jbm.1059.
  54. Zhao B. TNF and Bone Remodeling. Curr Osteoporos Rep. 2017;15(3):126-134. doi: 10.1007/s11914-017-0358-z.
  55. Chiba J., Rubash H.E., Kim K.J., Iwaki Y. The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis. Clin Orthop Relat Res. 1994;(300):304-312.
  56. Lerner U.H., Ohlin A. Tumor necrosis factors α and β can stimulate bone resorption in cultured mouse calvariae by a Prostaglandin‐independent mechanism. J Bone Miner Res. 1993;8(2):147-155. doi: 10.1002/jbmr.5650080205.
  57. Horowitz S.M., Purdon M.A. Mediator interactions in macrophage/particulate bone resorption. J Biomed Mater Res. 1995;29(4):477-484. doi: 10.1002/jbm.820290407.
  58. Fan Z., Kitaura H., Ren J., Ohori F., Noguchi T., Marahleh A. et al. Azilsartan inhibits inflammation-triggered bone resorption and osteoclastogenesis in vivo via suppression of TNF-α expression in macrophages. Front Endocrinol (Lausanne). 2023;14:1207502. doi: 10.3389/fendo.2023.1207502.
  59. Al-Ansari M.M., Aleidi S.M., Masood A., Alnehmi E.A., Abdel Jabar M., Almogren M. et al. Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis. Int J Mol Sci. 2022;23(17):10200. doi: 10.3390/ijms231710200.
  60. Evans D.M., Ralston S.H. Nitric oxide and bone. J Bone Miner Res. 1996;11(3):300-305. doi: 10.1002/jbmr.5650110303.
  61. Afzal F., Polak J., Buttery L. Endothelial nitric oxide synthase in the control of osteoblastic mineralizing activity and bone integrity. J Pathol. 2004;202(4):503-510. doi: 10.1002/path.1536
  62. Hukkanen M., Corbett S.A., Batten J., Konttinen Y.T., McCarthy I.D., Maclouf J. et al. Aseptic loosening of total hip replacement: macrophage expression of inducible nitric oxide synthase and cyclo-oxygenase-2, together with peroxynitrite formation, as a possible mechanism for early prosthesis failure. J Bone Joint Surg. 1997;79(3):467-474. doi: 10.1302/0301-620X.79B3.7469.
  63. Zhou D., Huang C., Lin Z., Zhan S., Kong L., Fang C. et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192-197. doi: 10.1016/j.cellsig.2013.11.004.
  64. Deets K.A., Vance R.E. Inflammasomes and adaptive immune responses. Nat Immunol. 2021;22(4):412-422. doi: 10.1038/s41590-021-00869-6.
  65. Rathinam V.A.K., Fitzgerald K.A. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell. 2016;165(4):792-800. doi: 10.1016/j.cell.2016.03.046.
  66. Fu J., Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu Rev Immunol. 2023;41(1):301-316. doi: 10.1146/annurev-immunol-081022-021207.
  67. Tsu B.V., Fay E.J., Nguyen K.T., Corley M.R., Hosuru B., Dominguez V.A. et al. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol. 2021;12:769543. doi: 10.3389/fimmu.2021.769543.
  68. Yi Y.S. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology. 2020;159(2):142-155. doi: 10.1111/imm.13134.
  69. Bockstiegel J., Engelhardt J., Weindl G. P2X7 receptor activation leads to NLRP3-independent IL-1β release by human macrophages. Cell Commun Signal. 2023;21(1):335. doi: 10.1186/s12964-023-01356-1.
  70. Wallis R. Structural and Functional Aspects of Complement Activation by Mannose-binding Protein. Immunobiology. 2002;205(4-5):433-445. doi: 10.1078/0171-2985-00144.
  71. Van der Ende J., Van Baardewijk L.J., Sier C.F.M., Schipper I.B. Bone healing and Mannose-Binding Lectin. Int J Surg. 2013;11(4):296-300. doi: 10.1016/j.ijsu.2013.02.022.
  72. Dong L., Wu J., Chen K., Xie J., Wang Y., Li D. et al. Mannan-binding lectin attenuates inflammatory arthritis through the suppression of osteoclastogenesis. Front Immunol. 2019;10:1239. doi: 10.3389/fimmu.2019.01239.
  73. Koks S., Wood D.J., Reimann E., Awiszus F., Lohmann C.H., Bertrand J. et al. The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty. J Arthrop. 2020;35(4):981-988. doi: 10.1016/j.arth.2019.11.004.
  74. Wang M., Xu S. Statistical power in genome-wide association studies and quantitative trait locus mapping. Heredity (Edinb). 2019;123(3):287-306. doi: 10.1038/s41437-019-0205-3.
  75. MacInnes S.J., Hatzikotoulas K., Fenstad A.M., Shah K., Southam L., Tachmazidou I. et al. The 2018 Otto Aufranc Award: How Does Genome-wide Variation Affect Osteolysis Risk after THA? Clin Orthop Relat Res. 2019;477(2):297-309. doi: 10.1097/01.blo.0000533629.49193.09.
  76. Brüggemann A., Eriksson N., Michaëlsson K., Hailer N.P. Risk of Revision After Arthroplasty Associated with Specific Gene Loci: A Genomewide Association Study of Single-Nucleotide Polymorphisms in 1,130 Twins Treated with Arthroplasty. J Bone Joint Surg. 2022;104(7):610-620. doi: 10.2106/JBJS.21.00750.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Genetic changes and types of allelic interactions affecting a phenotype (by Kamenskii A.D.)

下载 (120KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».