БАРИНОВА М. К., ГОГУЛИНА Е. Ю., ПОЧИНКА О. В. РЕАЛИЗАЦИЯ АЦИКЛИЧЕСКОЙ ДИАГРАММЫ СМЕЙЛА ОМЕГА-УСТОЙЧИВЫМ ДИФФЕОМОРФИЗМОМ ПОВЕРХНОСТИ¹

Аннотация. Диаграммой Смейла Ω -устойчивого диффеоморфизма является граф, вершины которого соответствуют базисным множествам, а ориентированные ребра последовательно соединяют вершины максимальных цепей. Одной из проблем, поставленных Смейлом, является описание допустимых диаграмм — диаграмм, реализуемых каким-либо диффеоморфизмом. В настоящей работе доказано, что любой ациклический граф реализуется Ω -устойчивым диффеоморфизмом поверхности с нетривиальными базисными множествами.

Ключевые слова: Диаграмма Смейла, Ω -устойчивость, базисное множество, DА-диффеоморфизм, ациклический граф.

BARINOVA M. K., GOGULINA E. YU., POCHINKA O. V. REALIZATION OF THE ACYCLIC SMALE DIAGRAM BY AN OMEGA-STABLE SURFACE DIFFEOMORFISM

Abstract. Smale diagram of Ω -stable diffeomorfism is a graph, which vertices correspond to basic sets and oriented edges sequentially connect vertices of maximal chain. Smale formulated description of acceptable diagrams, which are realized by a diffeomorfism. Present paper proves that an acyclic graph is implemented by an Ω -stable diffeomorfism on surface with nontrivial basic sets.

Keywords: Smale diagram, Ω -stability, basic set, DA-diffeomorfism, acyclic graph.

Введение и формулировка результатов. Пусть f — диффеоморфизм замкнутого п-многообразия M^n . Говорят, что диффеоморфизм f удовлетворяет аксиоме A, если его неблуждающее множество является гиперболическим, и периодические точки плотны в нем. Для A-диффеоморфизмов справедлива теорема о спектральном разложении C. Смейла [2], устанавливающая единственное представление неблуждающего множества в виде конечного объединения попарно непересекающихся множеств, называемых базисными, каждое из которых является компактным, инвариантным и топологически транзитивным.

На множестве базисных множеств любого А-диффеоморфизма f можно ввести отношение частичного порядка С. Смейла [2]. Именно, пусть Λ_i, Λ_j — базисные множества

¹ Исследование поддержано Лабораторией ДСП, НИУ ВШЭ, грант Правительства РФ, договор 075-15-2019-1931.

А-диффеоморфизма f . Говорят, что Λ_i, Λ_j находятся в отношении \prec $(\Lambda_i \prec \Lambda_j)$, если $W^s_{\Lambda_i} \cap W^u_{\Lambda_i} \neq \varnothing$.

Последовательность, состоящая из базисных множеств $\Lambda_i = \Lambda_{i_0}, \Lambda_{i_1}, ..., \Lambda_{i_k} = \Lambda_j(k..1)$, такая что $\Lambda_{i_0} \prec \Lambda_{i_1} \prec ... \prec \Lambda_{i_k}$ называется цепью длины $k \in \square$, соединяющей периодические орбиты Λ_i и Λ_j .

Такая цепь называется *максимальной*, если в нее нельзя добавить ни одного нового базисного множества. Цепь называется *циклом*, если $\Lambda_i = \Lambda_j$.

Диффеоморфизм $f:M^n \to M^n$ называется Ω -устойчивым, если C^1 – близкие к f диффеоморфизмы топологически сопряжены на неблуждающих множествах. Согласно [3], диффеоморфизм $f:M^n \to M^n$ является Ω -устойчивым тогда и только тогда, когда он удовлетворяет аксиоме A и не имеет циклов.

Диаграммой Смейла Δ_f Ω -устойчивого диффеоморфизма $f:M^n \to M^n$ называется граф, вершины которого соответствуют базисным множествам, а ориентированные ребра последовательно соединяют вершины максимальных цепей.

В дальнейшем под *направленным циклом* ориентированного графа будем понимать замкнутый путь, пройденный в соответствии с направлениями ребер ([6]). Граф называют *ациклическим*, если у него нет направленных циклов. При этом не исключаются ``параллельные" пути, которые выходят из одной начальной вершины и приходят в одну конечную, но при этом не совпадают.

В работе ([2]), в качестве проблемы сформулирован следующий вопрос: какие диаграммы могут соответствовать Ω -устойчивым диффеоморфизмам?

Настоящая работа дает частичный ответ на этот вопрос в виде доказательства следующей теоремы.

Теорема. Любой связный ациклический граф реализуется Ω -устойчивым диффеоморфизмом поверхности.

Построение базисных множеств для диффеоморфизма двумерного тора. Диффеоморфизм Аносова на 2-торе. Пусть $C \in GL(2,\square)$ — гиперболическая матрица с собственными значениями λ_1,λ_2 такими что $\lambda=|\lambda_1|>1$ и $|\lambda_2|=1/\lambda$. Так как матрица C имеет определитель, равный 1, то она индуцирует гиперболический автоморфизм $\hat{C}: T^2 \to T^2$ с неподвижной точкой О. Этот диффеоморфизм является диффеоморфизмом Аносова, обладающий двумя трансверсальными инвариантными слоениями (устойчивым и

неустойчивым), любой слой каждого из которых всюду плотен на торе. Кроме того, множество периодических точек диффеоморфизма \hat{C} также плотно на T^2 .

«Хирургическая операция» Смейла. Пусть $\sigma:\Box \to [0,1]$ — функция, заданная формулой (см. рис. 1)

$$\sigma(x) = \begin{cases} 0, & x, \lambda^{-3}, \\ \frac{1}{\frac{\lambda^{-3}+1}{2}-x}, & \lambda^{-3} < x < 1, \\ 1+e^{\left(x-\lambda^{-3}\right)^{2}(x-1)^{2}}, \\ 1, & x..1. \end{cases}$$

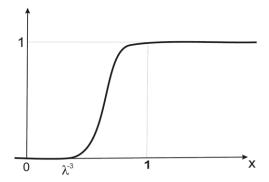


Рис. 1. График функции $\sigma(x)$.

Определим функцию $\nu:[0,1] \to [0,1]$ формулой (см. рис. 2)

$$v(x) = \begin{cases} \lambda^2 x, & 0, x, \lambda^{-3}, \\ \sigma(x)x + (1 - \sigma(x))\lambda^2 x, & \lambda^{-3} < x, 1. \end{cases}$$

Рис. 2. График функции $\nu(x)$.

Продолжим функцию V нечетным образом на отрезок [-1,1], положив v(-x) = -v(x) для $x \in [0,1]$.

Положим $D = \{(x,y) \in \square^2 \mid x^2 + y^2,, 2\}$. Определим функцию $\gamma_A : D \to [0,1]$ формулой $\gamma_A(x,y) = \begin{cases} \nu(x), & 0, \mid y \mid,, \lambda^{-3}, \\ \sigma(\mid y \mid) x + (1-\sigma(\mid y \mid) \nu(x), & \lambda^{-3} < x, 2. \end{cases}$

Определим диффеоморфизм $B_A: D \to {\rm D}$ формулой $B_A(x,y) = (\gamma_A(x,y),y)$. По построению, $B_A(x,y) = (\lambda^2 x,y)$, если $x^2 + y^2$, λ^{-6} и является тождественным на ∂D .

Пусть x,y- локальные координаты в окрестности U(O) точки на T^2 такие, что диффеоморфизм \hat{C} в этих координатах имеет форму $\hat{C}(x,y)=\left(x/\lambda,\lambda y\right)$. Тогда $Ox\subset W_O^s$ и $Oy\subset W_O^u$, а также $\{y=const\}$ и $\{x=const\}$ являются устойчивым и неустойчивым слоениями. Определим диффеоморфизм $\hat{B}_A:T^2\to T^2$, совпадающий с диффеоморфизмом B_A внутри окрестности U(O) и тождественный вне этой окрестности. Тогда согласно [4], [1], диффеоморфизм $\hat{\Psi}_A=\hat{B}_A\,{}^\circ\hat{C}$ является DA-диффеоморфизмом, неблуждающее множество которого состоит из одномерного аттрактора A, обладающего единственной связкой степени 2 с двумя различными граничными неподвижными P_1 и P_2 , и источниковой неподвижной точкой α (см. рис. 3).

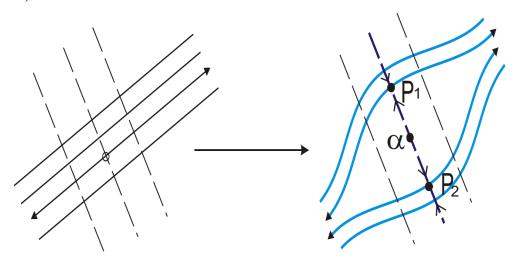


Рис. 3. «Хирургическая операция» Смейла.

Модельные диффеоморфизмы на торе. В этом разделе, используя хирургическую операцию Смейла, мы построим модельные диффеоморфизмы на двумерном торе.

Диффеоморфизм F_{m_1,\ldots,m_k} . Выберем $k\in \square$ периодических орбит O_1,\ldots,O_k диффеоморфизма Аносова \hat{C} периодов m_1,\ldots,m_k , соответственно. В окрестности каждой орбиты произведем хирургическую операцию Смейла вдоль устойчивого слоения.

Полученный диффеоморфизм $F_{m_1,\dots,m_k}: \mathbb{T}^2 \to \mathbb{T}^2$ имеет единственный нетривиальный одномерный аттрактор Λ_{m_1,\dots,m_k} и k периодических источниковых орбит $\alpha_{m_1},\dots,\alpha_{m_k}$ периодов m_1,\dots,m_k , соответственно.

Диффеоморфизм $F^{n_1,...,n_l}$. Выберем $l \in \square$ периодических орбит $O^1,...,O^l$ диффеоморфизма Аносова \hat{C} периодов $n_1,...,n_l$, соответственно. В окрестности каждой орбиты произведем хирургическую операцию Смейла вдоль неустойчивого слоения. Полученный диффеоморфизм $F^{n_1,...,n_l}: \mathbb{T}^2 \to \mathbb{T}^2$ имеет единственный нетривиальный одномерный репеллер $\Lambda^{n_1,...,n_l}$ и 1 периодических стоковых орбит $\omega_{n_1},...,\omega_{n_l}$ периодов $n_1,...,n_l$, соответственно.

Диффеоморфизм $F_{m_1,\ldots,m_k}^{n_1,\ldots,n_l}$. Выберем $l+k\in \square$ периодических орбит $O_1,\ldots,O_k,O^1,\ldots,O^l$ диффеоморфизма Аносова \hat{C} периодов $m_1,\ldots,m_k,n_1,\ldots,n_l$, соответственно. В окрестности каждой орбиты O_1,\ldots,O_k произведем хирургическую операцию Смейла вдоль устойчивого слоения и в окрестности каждой орбиты O^1,\ldots,O^l произведем хирургическую операцию Смейла вдоль неустойчивого слоения. Полученный диффеоморфизм $F_{m_1,\ldots,m_k}^{n_1,\ldots,n_l}: \mathbb{T}^2 \to \mathbb{T}^2$ имеет единственное нетривиальное нульмерное базисное множество $\Lambda_{m_1,\ldots,m_k}^{n_1,\ldots,n_l}$, k периодических источниковых орбит $\alpha_{m_1},\ldots,\alpha_{m_k}$ периодов m_1,\ldots,m_k и 1 периодических стоковых орбит m_1,\ldots,m_k периодов n_1,\ldots,n_l , соответственно.

Примеры модельных диффеоморфизмов $F_{2,3}$, $F^{1,4}$, F_2^4 изображены на рисунке 4.

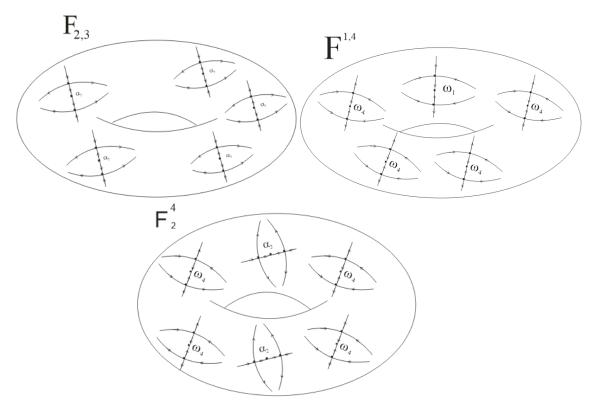


Рис. 4. Модельные диффеоморфизмы $F_{2,3}, F^{1,4}, F_2^4$.

Доказательство основного результата. В настоящем разделе мы реализуем диаграмму Смейла Ω -устойчивым диффеоморфизмом поверхности.

Распределение вершин графа по уровням. Так как в графе Г нет направленных циклов, на нем можно ввести частичный порядок. Упорядочим вершины графа по следующему принципу:

- уровень B_0 состоит из вершин $b_0^0, \dots, b_0^{q_0}$, в которые не входит ни одно ребро;
- уровень B_r состоит из вершин $b_r^0, ..., b_r^{q_r}$, в которые входят, только ребра из вершин уровней $B_0, ..., B_{r-1}$,
- последний уровень B_p состоит из вершин $b_p^0, ..., b_p^{q_p}$, из которых не выходят ребра (см. рис. 5).

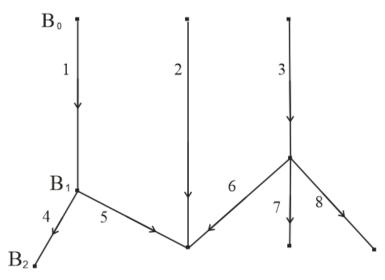


Рис. 5. Распределение вершин по уровням.

Перенумеруем ребра графа в произвольном порядке: каждому ребру $\left(b_{r_1}^{j_1},b_{r_2}^{j_2}\right)$ поставим в соответствие некоторый номер $k_{r_1,r_2}^{j_1,j_2}$, то есть каждое ребро будет определяться тройкой $\left(b_{r_1}^{j_1},b_{r_2}^{j_2},k_{r_1,r_2}^{j_1,j_2}\right)$.

Реализация вершин уровня B_0 . Для каждой вершины b_0^j и каждого выходящего ребра положим $n_i = k_{0,r_i}^{j,j_i}$ и $f_{b_0^j} = F^{n_1,\dots,n_{v_0^j}}$. Обозначим через ω_{0,r_i}^{j,j_i} стоковую орбиту, соответствующую выходящему ребру $(b_0^j,b_{r_i}^{j_i},k_{0,r_i}^{j,j_i})$. В примере графа на рисунке 5, $f_{b_0^0} = F^1, F_{b_0^1} = F^2, f_{b_0^2} = F^3$.

Реализация вершин уровня B_r . Для каждой вершины b_r^j и каждого входящего ребра $(b_r^{j_i}, b_r^j, k_{r,r_i}^{j_i,j}), i=1,\dots, \mu_r^j$ положим $m_i=k_{r,r_i}^{j_i,j}$. Для каждого выходящего ребра $(b_r^j, b_{r_i}^{j_i}, k_{r,r_i}^{j,j_i}), i=1,\dots, v_r^j$ положим $n_i=k_{r,r_i}^{j,j_i}$. Положим $f_{b_r^j}=F_{m_1,\dots,m_{\mu_r^j}}^{n_1,\dots,n_{v_r^j}}$. Обозначим через $\alpha_{r,r_i}^{j_i,j}$ источниковую орбиту, соответствующую входящему ребру $(b_r^j, b_r^j, k_{r_i}^{j_i,j})$ и через α_{r,r_i}^{j,j_i} стоковую орбиту, соответствующую выходящему ребру $(b_r^j, b_{r_i}^j, k_{r,r_i}^{j,j_i})$. В примере графа на рисунке b_r^j b_r^j

Реализация вершин уровня B_p . Для каждой вершины b_p^j и каждого входящего ребра $(b_{r_i}^{j_i},b_p^j,k_{r_i,r}^{j_i,j}),i=1,\ldots,\mu_p^j$ положим $m_i=k_{r_i,r}^{j_i,j}$ и $f_{b_p^j}=F_{m_i,\ldots,m_{\mu_p^j}}$. Обозначим через $\alpha_{r_i,p}^{j_i,j}$ источниковую орбиту, соответствующую входящему ребру $(b_{r_i}^{j_i},b_p^j,k_{r_i,r}^{j_i,j})$.

В примере графа на рисунке 5, $f_{b_2^0}=F_4, f_{b_2^1}=F_{2,5,6}, f_{b_2^2}=F_7, f_{b_3^3}=F_8$.

Склейка динамики вдоль ребра графа Γ . Каждому ребру $(b_{r_1}^{j_1},b_{r_2}^{j_2},k_{r_1,r_2}^{j_1,j_2})$ графа Γ однозначно соответствует стоковая орбита $\omega_{r_1,r_2}^{j_1,j_2}$ диффеоморфизма $f_{b_{r_1}^{j_1}}$ и источниковая орбита $\alpha_{r_1,r_2}^{j_1,j_2}$ диффеоморфизма $f_{b_{r_2}^{j_2}}$. Обе орбиты имеют одинаковый период $k_{r_1,r_2}^{j_1,j_2}$. Покажем, как склеить динамику вдоль ребра $(b_{r_1}^{j_1},b_{r_2}^{j_2},k_{r_1,r_2}^{j_1,j_2})$.

Выберем окрестности $U_{\eta_1,r_2}^{j_1,j_2}$, $V_{r_1,r_2}^{j_1,j_2}$, содержащие орбиты $\mathcal{O}_{r_1,r_2}^{j_1,j_2}$, $\mathcal{O}_{r_1,r_2}^{j_1,j_2}$, соответственно, и такие, что $f_{b_{\eta}^{j_1}}(U_{r_1,r_2}^{j_1,j_2}) \subset int U_{r_1,r_2}^{j_1,j_2}$, $V_{r_1,r_2}^{j_1,j_2} \subset int f_{b_{r_2}^{j_2}}(V_{r_1,r_2}^{j_1,j_2})$. Положим $X_{\eta_1,r_2}^{j_1,j_2} = U_{\eta_1,r_2}^{j_1,j_2}$, $int f_{b_{\eta}^{j_1}}(U_{\eta_1,r_2}^{j_1,j_2})$, $Y_{\eta_1,r_2}^{j_1,j_2} = f_{b_{r_2}^{j_2}}(V_{\eta_1,r_2}^{j_1,j_2})$, $int V_{\eta_1,r_2}^{j_1,j_2}$. Оба множества состоят из одинакового количества двумерных колец. Обозначим через $H_{\eta_1,r_2}^{j_1,j_2} : X_{\eta_1,r_2}^{j_1,j_2} \to Y_{r_1,r_2}^{j_1,j_2}$ диффеоморфизм такой, что $H_{\eta_1,r_2}^{j_1,j_2} \circ f_{b_{\rho}^{j_1}} |_{\partial U_{\eta_1,r_2}^{j_1,j_2}} = f_{b_{r_2}^{j_2}} \circ H_{\eta_1,r_2}^{j_1,j_2} |_{\partial U_{\eta_1,r_2}^{j_1,j_2}}$.

На рисунке 6 введенные объекты изображены для ребра $(b_0^0,b_1^0,1)$ графа, приведенного на рисунке 5.

Положим

$$Q_{r_{1},r_{2}}^{j_{1},j_{2}}=(\mathsf{T}^{2}\ ,\ \ intf_{b_{r_{1}}^{j_{1}}}(U_{r_{1},r_{2}}^{j_{1},j_{2}}))\,\mathsf{T}\ (\mathsf{T}^{2}\ ,\ \ intV_{r_{1},r_{2}}^{j_{1},j_{2}})$$

И

$$\hat{Q}_{\eta_1,r_2}^{j_1,j_2} = (\mathbf{T}^2, int f_{b_n^{j_1}}(U_{\eta_1,r_2}^{j_1,j_2})) \cup_{H_{n,r_2}^{j_1,j_2}} (\mathbf{T}^2, int V_{\eta_1,r_2}^{j_1,j_2}).$$

Обозначим через $p_{\eta,r_2}^{j_1,j_2}:Q_{\eta,r_2}^{j_1,j_2}\to \hat{Q}_{\eta,r_2}^{j_1,j_2}$ естественную проекцию.

Склейкой динамики вдоль ребра $(b_{r_{\rm i}}^{j_{\rm i}},b_{r_{\rm 2}}^{j_{\rm 2}},k_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}})$ графа Γ назовем диффеоморфизм $f_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}:\hat{Q}_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}\to\hat{Q}_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}$, совпадающий с диффеоморфизмом $p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}f_{b_{r_{\rm 2}}^{j_{\rm 2}}}(p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}})^{-1}|_{p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}}$ на $p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}$) и с диффеоморфизмом $p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}(p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}})^{-1}|_{p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}}$ на $p_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}}(T^2$, $U_{r_{\rm i},r_{\rm 2}}^{j_{\rm i},j_{\rm 2}})$.

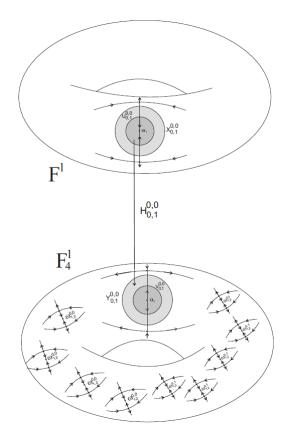


Рис. 6. Объекты, связанные с ребром $(b_0^0, b_1^0, 1)$.

Построение результирующего диффеоморфизма. В построенных по графу Γ моделях существует взаимно однозначное соответствие между стоковыми и источниковыми орбитами.

Именно стоковая орбита $\omega_{r_1,r_2}^{j_1,j_2}$ диффеоморфизма $f_{b_{r_1}^{j_1}}$ соответствует источниковой орбите $\alpha_{r_1,r_2}^{j_1,j_2}$ диффеоморфизма $f_{b_{r_2}^{j_2}}$. Обе орбиты имеют одинаковый период $k_{r_1,r_2}^{j_1,j_2}$. Результирующий диффеоморфизм $f:M^2\to M^2$ представляет из себя склейку динамики вдоль всех ребер графа Γ .

СПИСОК ЛИТЕРАТУРЫ

- 1. Каток А. Б., Хасселблатт Б. Введение в современную теорию динамических систем. М.: Факториал, 1999. 767 с.
- 2. Смейл С. Дифференцируемые динамические системы // Успехи мат. наук. 1970. Т. 25, В. 1. – С. 113–185.
- 3. Smale S. The Ω -stability theorem // Same Proceedings. -1970. Vol. 14. P. 289–297.

- 4. Williams R. The "*DA*" maps of Smale and structural stability // Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc. 1970. P. 329–334.
- 5. Карпов Д. В. Теория графов. СПб.: Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН. 2017. 482 с.