КУЗНЕЦОВА И. С., МАМЕДОВА Т. Ф. ЗАДАЧА ОБ ОПТИМАЛЬНОМ ЭКОНОМИЧЕСКОМ РОСТЕ

Аннотация. В статье рассматривается вопрос оптимизации уровня потребления для экономического объекта на примере конкретного предприятия. На основе принципа максимума решена задача оптимизации сбережений. Получены оптимальные траектории потребления и капиталовооруженности.

Ключевые слова: экономический рост, оптимизация, потребление, производственная функция, капиталовооруженность.

KUZNETSOVA I. S., MAMEDOVA T. F. THE PROBLEM OF OPTIMAL ECONOMIC GROWTH

Abstract. The problem of optimizing the level of consumption for an economic object on the example of a specific enterprise is considered in the article. On the basis of the maximum principle, the problem of savings optimization is solved. The optimal trajectories of consumption and capital-labor ratio are obtained.

Keywords: economic growth, optimization, consumption, production function, capital-labor ratio.

Актуальность проблемы. Математики совместно с экономистами занимаются изучением факторов, которые влияют на устойчивый экономический рост, способствующий улучшению благосостояния населения. В период переломных моментов поднимаются следующие вопросы: возможно ли моделировать направления экономического роста, насколько истинны построенные на основе таких моделей прогнозы, и в какой степени оправданы эти прогнозы в современных условиях.

Инновационные технологии, научно-технический прогресс, автоматизация производства являются значительным фундаментом высоких темпов роста экономики в длительном периоде. Таким образом, становится актуальным использование моделей экономического роста.

Актуальность проблемы обусловлена тем, что в современной экономике часто используются оптимизационные методы, составляющие основу математического программирования. Грамотное потребление ресурсов имеет огромное значение, поскольку их оптимизация может увеличить прибыль [1].

Постановка задачи. Задача об оптимальном экономическом росте представляет собой задачу о выборе оптимальных траекторий c(t), k(t), для которых благосостояние максимально. Она имеет следующий вид [2]:

$$J(c) = \int_{t_1}^{t_2} e^{-\delta(t-t_1)} U(c(t)) dt \to max,$$

$$\frac{dk}{dt} = f(k) - \lambda k - c,$$

$$k(t_1) = k_1,$$

$$0 \le c(t) \le f(k),$$

где k_1 , λ , δ — заданные числа, а f(k), U(c) — заданные функции.

Решением задачи оптимизации является траектория потребления на единицу эффективного труда $\{c(t)\}$ и траектория капиталовооруженности эффективного труда $\{k(t)\}$, вдоль которых функционал J(c)достигает максимума. Решение зависит от двух функции: функции полезности U и производственной функции k(t), от трех параметров: нормы дисконтирования, нормы амортизации, темпа рабочей силы и от начального значения капиталовооруженности рабочего. Задача оптимизации может решаться на основе принципа максимума Понтрягина.

Требуется оптимизировать уровень потребления сельскохозяйственного предприятия «Продовольствие», которое занимается выработкой молочной продукции. Имеются данные за 2004 – 2018 гг. о выручке от продажи сельскохозяйственной продукции, о среднегодовой стоимости основных средств и о численности персонала.

Описание алгоритма решения задачи.

- 1) Построение производственной функция f(k) на основе данных о динамике выпуска продукции и производственных факторах (капитал, труд);
 - 2) Выбор функции полезности U(c);
 - 3) Вычисление точки равновесия (k^*, c^*) , соответствующей сбалансированному росту;
 - 4) Решение системы двух дифференциальных уравнений;
 - 5) Построение траекторий потребления и капиталовооруженности;
- 6) Вычисление значения функционала для нахождения оптимального уровня потребления.

Решение задачи. На основе исходных данных таблицы 1 построим производственную функцию, которая характеризует объем выпуска продукции, величина которого зависит от затрат факторов производства.

Таблица 1

Экономические показатели предприятия

Год	Выручка от продажи сельскохозяйственной продукции, тыс. руб., Y	Среднегодовая стоимость основных средств, тыс. руб., К	Численность персонала, L
2004	843750	195000	533
2005	860625	210000	540
2006	904500	240000	530
2007	968625	270000	597
2008	995625	285000	543
2009	1046250	288000	535
2010	1113750	300000	570
2011	1181250	330000	600
2012	1215000	360000	615
2013	12048750	375000	630
2014	1282500	382500	628
2015	1333125	390000	637
2016	1390601	409590	676
2017	1380500	410000	650
2018	1367218	405967	670

Производственная функция y = f(k) должна удовлетворять условиям [3; 4]:

$$f(k) > 0, f'(k) > 0, f''(k) < 0 \ \forall \ k > 0,$$

 $f(0) = 0, f'(0) = \infty.$

В результате обработки данных, используя программу Microsoft Excel, был построен график производственной функции за данный промежуток времени. С помощью аппроксимации найдена математическую модель, которая наилучшим образом описывает наблюдаемые значения. Найденная функция имеет вид:

$$y = 1506,1k^{0,123}. (1)$$

Эта функция удовлетворяет условиям:

$$f(k) = 1506,1k^{0,123} > 0,$$

$$f'(k) = 185,2503k^{-0,877} > 0,$$

$$f''^{(k)} = -162,4645k^{-1,877} < 0,$$

$$f(0) = 1506,1 * 0^{0,123} = 0,$$

$$f'(0) = 185,2503 * 0^{-0,877} = \infty.$$

Примем, что функция полезности имеет вид:

$$U(c) = \sqrt[3]{c},\tag{2}$$

где c(t) – потребление, которое приходится на одну рабочую единицу.

Данная функция так же удовлетворяет требуемым условиям:

$$U(c) = \sqrt[3]{c} > 0,$$

$$U'(c) = \frac{1}{3\sqrt[3]{c^2}} > 0,$$

$$U''(c) = -\frac{2}{9\sqrt[3]{c^5}} < 0,$$

$$U'(0) = \frac{1}{3\sqrt[3]{0}} = \infty.$$

Начальные условия: $t_1=0, t_2=14$. Коэффициент амортизации капитала $\mu=0,06$. Годовой темп прироста числа занятых n составляет 0,016. Норма дисконтирования $\delta=0,5$.

Найдем стационарные траектории c^* = const, k^* = const.

 k^* получим из уравнения: $f'(k^*) = \mu + n + \delta$:

$$185,2503k^{*^{-0,877}} = 0,06 + 0,016 + 0,5,$$
$$k^* = 722,76.$$

Вычислим $c^* = f(k^*) - (\mu + n)k^*$.

$$c^* = 1506,1 * 722,76^{0,123} - (0,06 + 0,016) * 722,76$$

 $c^* = 3329,69.$

Величиные k^* , c^* удовлетворяют неравенству: $0 < c^* < f(k^*)$. Точка равновесия (k^*, c^*) является траекторией сбалансированного роста.

Вычислим значение функционала I(c):

$$J(c) = \int_{0}^{14} e^{-0.5(t-0)} * \sqrt[3]{3329,69} dt = 14.9 \int_{0}^{14} e^{-0.5t} dt =$$
$$= 14.9 \left(-\frac{1}{0.5} e^{-7} + \frac{1}{0.5} e^{0} \right) = 29.84.$$

Полагая

$$\mu = 0.06, n = 0.016, \delta = 0.5$$

методом Рунге-Кутта 4 порядка вычислим решение системы дифференциальных уравнений

$$\begin{cases} \dot{c} = \frac{1}{\sigma(c)} (f'(k) - \mu - n - \delta)c, \\ \dot{k} = f(k) - (\mu + n)k - c. \end{cases}$$
(3)

Показатели потребления и капиталовооруженности имеют тенденцию роста, но потребление растет значительно быстрее, чем капиталовооруженность. Значение функционала J(c) при этом равно 29,84.

График траектории потребления на рисунке 1 изображен линией зеленого цвета, график капиталовооруженности – линией синего цвета.

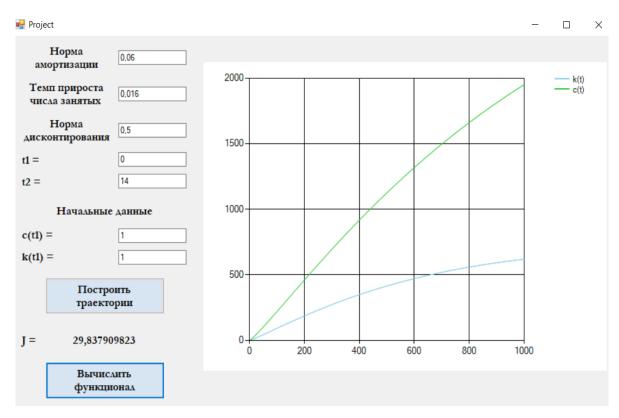


Рис. 1. Траектории потребления и капиталовооружённости.

Увеличим коэффициент амортизации μ до 0,3 и посмотрим на поведение модели. Решим систему уравнений с параметрами:

$$\mu = 0.03, n = 0.016, \delta = 0.5.$$

Полученные результаты показывают, увеличение коэффициента амортизации капитала незначительно замедляет рост потребления и капиталовооруженности. Только в случае уменьшения уровня инфляции можно добиться роста капиталовооруженности. Значение функционала в данном случае равно 29,04.

Теперь рассмотрим модель при уменьшении нормы дисконтирования. Начальные условия: $t_1=0, t_2=14, \mu=0.06, n=0.016, \delta==0.03.$

Полученные результаты показывают, что в данной ситуации наблюдается рост как потребления на единицу эффективного труда, так И траектории траектории капиталовооруженности эффективного труда. Следовательно, уменьшение нормы амортизации увеличивает скорость роста обеих величин, что говорит о важности долгосрочного планирования. При данных параметрах значение функционала равно 180,14.

Вывод. Таким образом, в результате проделанной работы поставленная цель была достигнута, а именно: разработана экономико-математическая модель и выполнена оптимизация уровня потребления для экономического объекта. На основе принципа максимума решена задача оптимизации сбережений. Получены оптимальные траектории потребления и капиталовооруженности. Анализ полученных результатов позволяет сделать вывод о том, что максимизация потребления происходит в том случае, когда норма дисконтирования будет минимальной.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андреева Е. А., Цирулева В. М. Вариационное исчисление и методы оптимизации: учеб. пособие. Тверь: Твер. гос. ун-т, 2001. 576 с.
- 2. Ашманов С. А. Введение в математическую экономику: учеб. пособие. М.: Наука, гл. ред. физ.-мат. лит. 1984. 296 с.
- 3. Мамедова Т. Ф., Каледин О. Е., Шабанова В. Г., Кирейчева Е. Ю. Математическая модель оптимизации управления хозяйственной деятельностью одного производственного предприятия // Аналитические и численные методы моделирования естественно-научных и социальных проблем : сб. ст. Х Междунар. науч.-техн. конф. (г. Пенза 28–30 октября 2015 г.) / под ред. И. В. Бойкова. Пенза: ПГУ, 2016. С. 125–130.
- 4. Шабанова В. Г., Василькин Н. В., Поверинов А. И. О методике прогнозирования роста капитала предприятия // Математические методы и информационные технологии управления в науке, образовании и правоохранительной сфере: Сборник материалов Всероссийской научно-технической конференции / Московский государственный технический университет имени Н. Э. Баумана, Академия ФСИН России. Рязань: Рязанский государственный университет имени С.А. Есенина. 2017. С. 51—55.