ТРЕМАСОВ В. В., ВИЛЬДЯЕВ Д. В., ЕРОФЕЕВ В. Т.

ВЛИЯНИЕ СОДЕРЖАНИЯ КОМПОНЕНТОВ НА ПРОЧНОСТНЫЕ ПОКАЗАТЕЛИ ВИНИЛЭФИРНЫХ КОМПОЗИТОВ

Аннотация. Произведена оптимизации составов винилэфирных композитов. Составлен комплексный симметричный трехуровневый план второго порядка. Выявлены составы композитов с высокими показателями прочности при изгибе и прочности при сжатии.

Ключевые слова: уравнение регрессии; винилэфирные композиты; прочность, отверждающая система.

TREMASOV V. V., VILDYAEV D. V., YEROFEEV V. T.

THE EFFECTS OF STRUCTURAL COMPONENTS ON TOUGHNESS

INDEXES OF VINYLESTER COMPOSITES

Abstract. The article considers the results of optimization of vinylester composites' structures. In this connection, the authors present a complex symmetric three-tiered plan of the second order. The study showed the composite components that demonstrate high flexural and compressive toughness.

Keywords: regression equation; vinylester composites; toughness; curing system.

Непрерывное развитие строительства в условиях современного индустриального общества сопровождается постоянными поисками более совершенных композиционных материалов, превосходящих по своим прочностным, упруго-деформационным и другим свойствам традиционные широко применяемые материалы (бетоны, природные каменные и д.р.). К таким материалам относятся материалы на полимерных связующих, которые находят широкое применение в строительстве, в частности при отделке жилых, административных помещений, в которых люди проводят до 90 % своего времени. Примером таких поисков могут служить работы по улучшению свойств бетонов с помощью введения в их состав полимеров. К конструкционным материалам подобного типа относятся защитные антикоррозионные покрытия и полимербетоны. К числу наиболее применяемых полимерных связующих, применяемых для изготовления полимерных композитов относятся эпоксидные, полиэфирные и другие смолы [1, 2]. В последнее время отечественная промышленность стала выпускать винилэфирные смолы [3]. Однако эффективность практических разработок в этой области сдерживается рядом факторов, одним из которых является отсутствие знаний о влиянии состава на основные свойства композитов.

В ходе проведения эксперимента нами были проведены исследования влияния количественного соотношения компонентов отверждающей системы, состоящей из пероксид циклогексанона, октоата кобальта и 10% раствора димитиланилина в стироле, на свойства композитов на основе винилэфирной смолы марки РП-14С.

Исследования проведены с применением методов математического планирования эксперимента. В качестве матрицы планирования использовали комплексный симметричный трехуровневый план второго порядка с количеством опытов, равным 13, приведеная ниже.

Комплексный симметричный трехуровневый план второго порядка на кубе с количеством опытов, равным 13

X_1	0	+1	-1	0	+1	-1	0	+1	-1	0	+1	-1	0
X_2	+1	0	0	-1	+1	+1	0	-1	-1	+1	0	0	-1
X ₃	+1	+1	+1	+1	0	0	0	0	0	-1	-1	-1	-1

Варьируемыми факторами служили: X_1 — содержание пероксида циклогексанона (ПЦОН-2); X_2 — содержание октоата кобальта (ОК-1); X_3 — содержание раствора димитиланилина в стироле (ДМА). Содержание компонентов композитов варьировались в пределах эксперимента в соотношении ПЦОН-2 — 0,5—2,5 мас. ч., ОК-1 — 1—5 мас. ч. и ДМА — 1—3 мас. ч. на 100 мас. ч. винилэфирной смолы соответственно.

Нами были изготовлены приведенные выше составы. В результате испытания образцов получены показатели прочности на сжатие и на изгиб в составов винилэфирных композитов.

Прочность составов

Таблица 1

№ состава	Прочность, МПа					
	На изгиб	На сжатие				
1	55,65	91,11				
2	66,53	88,15				
3	71,68	94,08				
4	36,94	99,26				
5	38,59	102,22				
6	58,32	104,45				
7	37,25	90,37				
8	61,54	88,15				
9	56,26	87,41				
10	51,02	98,52				
11	43,87	97,04				
12	54,85	82,22				
13	59,86	101,48				

В результате статистической обработки экспериментальных данных приведенные выше были получены уравнения регрессии описывающее изменение прочности при изгибе ($R_{\mbox{\tiny H3F}}$) и прочности при сжатии ($R_{\mbox{\tiny CM}}$):

$$R_{\text{\tiny H3F}} = 37,25 - 3,823 \cdot X_1 - 1,377 \cdot X_2 + 2,65 \cdot X_3 + 12,396 \cdot X_1^2 - 6,252 \cdot X_1 X_2 + 1,457 \cdot X_1 X_3 + 4,031 \cdot X_2^2 + 6,887 \cdot X_2 X_3 + 9,586 \cdot X_3^2; \tag{1}$$

$$R_{\text{CM}} = 90,37 + 0,925 \cdot X_1 + 2,5 \cdot X_2 - 0,833 \cdot X_3 - 1,016 \cdot X_1^2 - 0,743 \cdot X_1 X_2 + 5,188 \cdot X_1 X_3 + 6,204 \cdot X_2^2 - 1,297 \cdot X_2 X_3 + 1,019 \cdot X_3^2;$$
(2)

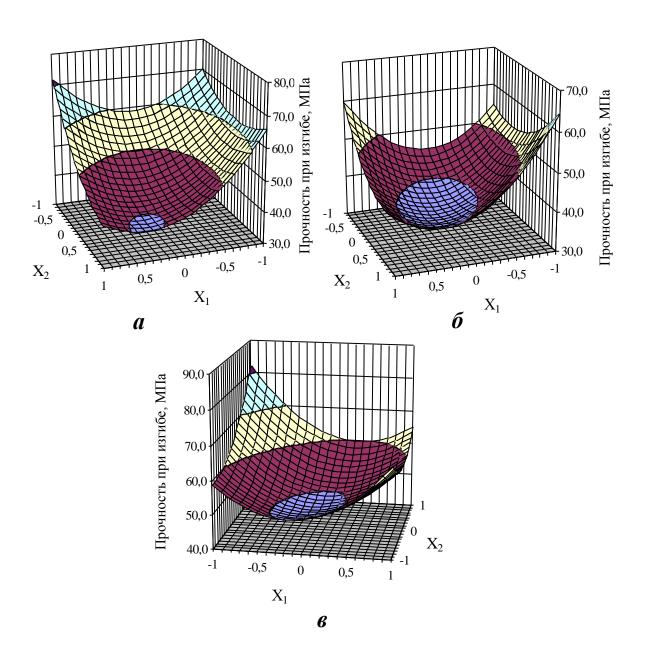


Рис. 1. Влияние содержания компонентов винилэфирных композитов на предел прочности при изгибе при содержании ДМА:

1 мас. ч. $(X_3=-1)$ (a), 2 мас. ч. $(X_3=0)$ (δ) , 3 мас. ч. $(X_3=+1)$ (ϵ) на 100. мас. ч. смолы X_1- содержание ПЦОН-2 (0,5-2,5) мас. ч.); X_2- содержание ОК-1 (1-5) мас. ч.)

Из анализа приведенного выше уравнения (1) следует, что максимальное значение предела прочности при изгибе, равное 82 МПа, достигается при содержании диметиланилина, пероксида циклогексанона и октоата кобальта в количестве 3, 0,5 и 5 мас. ч. на 100 мас.ч. смолы соответственно. Следует отметить, что при начальной концентрации ДМА (1–2 мас. ч.) наибольшие значения прочности при изгибе зафиксированы при содержании в системе 0,5 мас. ч. пероксида циклогексанона, а также при концентрации ПЦОН-2 и ОК-1 в количестве 2,5 и 1 мас. ч. на 100 мас.ч. винилэфирной смолы соответственно.

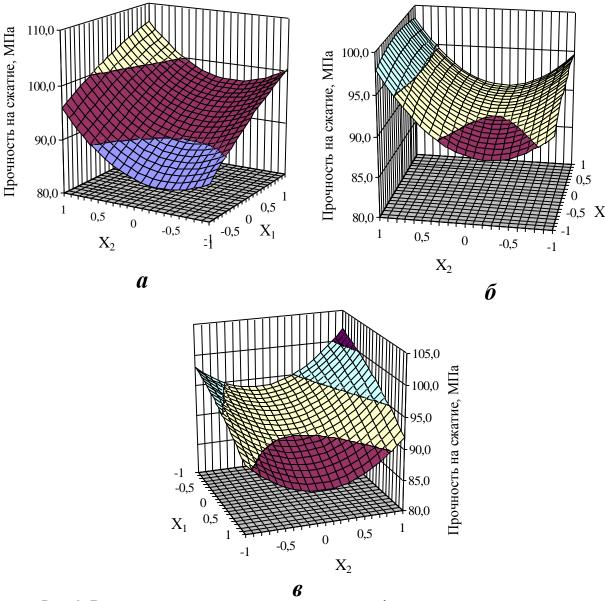


Рис. 2. Влияние содержания компонентов винилэфирных композитов на предел на сжатие при содержании ДМА:

1 мас. ч. $(X_3 = -1)$ (a), 2 мас. ч. $(X_3 = 0)$ (δ), 3 мас. ч. $(X_3 = +1)$ (ϵ) на 100. мас. ч. смолы

Для большинства соотношений компонентов образцов винилэфирной композитов минимальные значения исследуемого показателя зафиксированы при содержании диметиланилина, пероксида циклогексанона и октоата кобальта в количестве 1,5–2, 1,5–1,8 и 2–4 мас. ч. на 100 мас. ч. винилэфирной смолы соответственно. Нами было зафиксировано минимальное значение предела прочности при изгибе в случае использования системы из раствора ДМА, ПЦОН-2 и ОК-1 в количестве 2, 1,6 и 2,7 мас. ч. на 100 мас. ч. смолы соответственно. Следует отметить, что исходя из величины исследуемого параметра, в случае повышения содержания ДМА, концентрацию ОК-1, целесообразно, как правило, так же увеличивать.

Из анализа приведенного выше уравнения (2) так же видно, что значения предела прочности на сжатие исследованных винилэфирных композитов находятся в пределах от 84 до 106 МПа, т.е. изменения данного прочностного параметра менее существенны, чем у предела прочности при изгибе. Максимальное значение предела прочности на сжатие составляет 106 МПа и достигается при содержании ДМА, ПЦОН-2 и ОК-1 в количестве 1, 2,5 и 5 мас. ч. на 100 мас. ч.винилэфирной смолы соответственно. На увеличение величины предела прочности на сжатие позитивное влияние оказывает повышение концентрации, как ускорителя, так и отвердителя, однако следует отметить некоторые особенности, так при введении 2–3 мас. ч. октоата кобальта происходит незначительное снижение прочности, а увеличение содержания ДМА, наоборот обуславливает некоторое его уменьшение.

Таким образом, с помощью математического планирования эксперимента проведена оптимизация компонентов винилэфирных композитов по показателям прочности как при изгибе, так и при сжатии, что обуславливает более полное представлении о специфики материала Получены составы композитов повышенной прочности, удовлетворяющие требованиям современного строительства как для изготовления, строительных композитов (полимербетонов) так и антикоррозионных защитных покрытий.

ЛИТЕРАТУРА

- 1. Ерофеев В. Т., Соколова Ю. А, Богатов А. Д. и др. Эпоксидные полимербетоны, модифицированные нефтяными битумами, каменноугольной и карбамидной смолами и аминопроизводными соединениями. М.: Изд-во ПАЛЕОТИП, 2007. 240 с.
- 2. Богатова С. Н., Богатов А. Д., Ерофеев В. Т. и др. Исследование биологической стойкости эпоксидных покрытий // Лакокрасочные материалы и их применение. $N \ge 3,2011.$ С. 42-45.

3. Ерофеев В. Т., Волгина Е. В., Казначеев С. В., Богатов А. Д. Исследование прочности и жесткости винилэфирных композитов, наполненных литопоном // Вестник отделения строительных наук. – Вып. 16: в 2 т. – Москва: Изд-во МГСУ, 2012. – Т.2. – С. 59–67.