ВАСИЛЬКИН Н. В., МАМЕДОВА Т.Ф.

О ПРОГНОЗИРОВАНИЕ ВРЕМЕННОГО РЯДА

С ПОМОЩЬЮ НЕЙРОННЫХ СЕТЕЙ

Аннотация. В статье решается задача о прогнозировании временного ряда.

Рассматривается пример энергопотребления. Для примера проводится анализ модели

экстраполяции временных рядов по выборке максимального подобия с помощью

применения нейронных сетей.

Ключевые слова: нейронная сеть, временной ряд, математическая модель.

VASILKIN N. V., MAMEDOVA T. F.

ON TIME SERIES PREDICTION WITH NEURAL NETWORKS

Abstract. The article solves the problem of time series forecasting. The case of energy

consumption is considered. The article presents an analysis of the model of time series extrapolation

on a maximum similarity sampling by using of neural networks.

Keywords: neural networks, time series, mathematical model.

В настоящее время задача анализа временных является актуальной темой для

большого количества практических исследователей. От выбора метода анализа временных

данных существенно зависит скорость расчётов и точность полученных прогнозов. На

текущий момент разработано множество моделей прогнозирования временных рядов [1-9].

С целью повышения точности результатов прогнозирования и увеличение скорости

обработки данных временного ряда, наиболее перспективным является создание

комбинированных моделей, в которых первоначально выполняется кластеризация, а затем

производиться прогнозирование временного ряда для нужного кластера.

Рассмотрим временной ряд вида: Z(t) = Z(1), Z(2), ..., Z(t).

Предположим, что последовательность значений, $Z_t^M = Z(t), Z(t+1), ..., Z(t+M+1),$

представляет собой выборку длины M с момента начала отсчета t; $M \in \{1, 2, ..., T\}$,

 $t \in \{1,2,...,T-M+1\}$. Тогда выборкой будет является фрагмент временного ряда, имеющий

длину. Обозначим через временную точку начала отсчета И задержку

 $Z_{t}^{M}=Z(t),...Z(t+M-1)$ и $Z_{t-k}^{M}=Z(t-k),...Z(t-k+M-1)$, где $k\in\{1,2,...,t-1\}$ - две выборки

одинаковой длины, принадлежащие одному временному ряду.

Тогда справедлива формула

$$Z_t^M = \alpha_1 Z_{t-k}^M + \alpha_0 I^M + E^M. \tag{1}$$

$$\hat{Z}_t^M = \alpha_1 Z_{t-k}^M + \alpha_0 I^M. \tag{2}$$

где α_1 и α_0 – некоторые коэффициенты.

Для зависимости (1) функция ошибки аппроксимации S_k^M для выборок Z_t^M и Z_{t-k}^M с задержкой k будет имеет вид

$$S_k^M(\alpha_1, \alpha_0) = \sum_{t=0}^{M-1} (Z(t+i) - \alpha_1 Z(t-k+i) - \alpha_0)^2.$$
(3)

Необходимо подобрать такие значения α_1 и α_0 , чтобы при подстановке в (3) было получено минимально возможное значение $S_k^M(\alpha_1,\alpha_0)$. Решение находится методом наименьших квадратов.

Рассмотрим временной ряд Z(t) и некоторую выборку Z_t^M , принадлежащую данному временному ряду. Определим все значения $S_k^M(\alpha_1,\alpha_0)$ для $k\in\{1,2,...,t-1\}$, M=const. Затем найдем минимальное

$$S_{k\min}^{M} = \min(S_{1}^{M}, S_{2}^{M}, ..., S_{t-1}^{M}). \tag{4}$$

Определим множество значений модуля линейной корреляции при $k \in \{1,2,...,t-1\}$, M=const по формуле:

$$\rho_{k}^{M} = \left| \rho(\hat{Z}_{t}^{M}, Z_{t}^{M}) \right| = \frac{\left| \sum_{t=1}^{M} (\hat{Z}(t+i) - \overline{Z})(Z(t+i) - \overline{Z}) \right|}{\sqrt{\sum_{t=1}^{M} (\hat{Z}(t+i) - \overline{Z})^{2} \sum_{t=1}^{M} (Z(t+i) - \overline{Z})^{2}}} \in [0,1]$$
(5)

Тогда справедливо:

$$\rho_{k\max}^{M} = \max(\rho_{1}^{M}, \rho_{2}^{M}, ..., \rho_{t-1}^{M}). \tag{6}$$

Очевидно, что задержка k_{\min} из (4) и задержка k_{\max} из (6) будут совпадать между собой, т.е. $k_{\min} = k_{\max}$. Полученную задержку, соответствующую минимуму ошибки регрессии $S_{k\min}^M$ и максимуму модуля корреляции $\rho_{k\max}^M$ обозначим k_{\max} . Назовем выборку $Z_{t-k\max}^M$ выборкой максимального подобия. Выборка максимального подобия $Z_{t-k\max}^M$ является

выборкой, которая при подстановке в уравнение (2) дает в результате значения выборки \hat{Z}_t^M , которая максимально точно описывает исходную выборку Z_t^M .

Чтобы определить значения прогнозной выборки \hat{Z}_{T+1}^P , учитывая влияние внешних факторов, представленных в виде временных рядов $X_1(t),...,X_S(t)$, был разработан алгоритм, аналогичный предыдущему случаю. Выразим прогнозную выборку исходного временного ряда Z_t^T , и выборки $X_{(1)T+1}^P,...,X_{(S)T+1}^P$ следующим образом

$$\hat{Z}_{T+1}^{P} = \alpha_{S+1} Z_{T}^{P} + \alpha_{S} X_{(S)T+1}^{P} + \dots + \alpha_{1} X_{(1)T+1}^{P} + \alpha_{0} I^{P}.$$
 (7)

Алгоритм.

- 1. Определяется выборка максимального подобия для выборки новой истории.
- 2.. Вычисляется выборка Z_T^P .
- 3. Вычислим выборку \hat{Z}_{T+1}^P . Экстраполяция значения выборки \hat{Z}_{T+1}^P определяем по формуле

$$\hat{Z}_{T+1}^{P} = \alpha_{S+1} Z_{k \max_{s+M}^{P}}^{P} + \alpha_{S} X_{(S)T+1}^{P} + ... + \alpha_{1} X_{(1)T+1}^{P} + \alpha_{0} I^{P}. = \text{EMMSPX(M) (\S)}$$

Средняя абсолютная ошибка дает точность аппроксимации и экстраполяции временных рядов

$$MAPE = \frac{1}{M} \sum_{i=t}^{t+M-1} \frac{\left| Z(i) - \hat{Z}(i) \right|}{Z(i)} 100\%.$$
 (9)

На текущий момент явно определена проблема быстрого и точного нахождения коэффициентов линейной корреляции, близкого единице. Данную проблему можно решать, основываясь на комбинированной модели с помощью многослойной нейронной сети с алгоритмом обучения, основанным на принципе обратного распространения ошибки

Найдем коэффициенты линейной корреляции при помощи модели нейронной сети. Пусть каждый нейрон сети имеет нелинейную функцию активации:

$$y_i = \frac{1}{1 + \exp(-\nu_j)},$$
 (10)

где ν_{j} – индуцированное локальное поле; y_{i} – выход нейрона.

Пусть сеть содержит несколько слоев скрытых нейронов, не являющихся частью входа или выхода сети, которые позволяют сети обучаться решению сложных задач.

Алгоритм обратного распространения ошибки заключается в следующем:

1. Сигнал ошибки выходного нейрона j на итерации n (соответствующей n-му примеру обучения) определяется выражением

$$e_{j}(n) = d_{j}(n) - y_{j}(n).$$
 (11)

2. Энергия среднеквадратичной ошибки вычисляется как нормализованная по N сумма всех значений энергии ошибки E(n)

$$E(n) = \frac{1}{N} \sum_{n=1}^{N} E(n).$$
 (12)

3. Индуцированное локальное поле $v_i(n)$, равно

$$v_{j}(n) = \sum_{i=0}^{m} w_{ij}(n) y_{i}(n),$$
(13)

где т-общее число входов.

4. Функциональный сигнал $y_{j}(n)$ на выходе нейрона ј на итерации n:

$$y_i(n) = \varphi_i(v_i(n)). \tag{14}$$

Алгоритм обратного распространения состоит в применении к синаптическому весу $w_{ii}(n)$ коррекции $\Delta w_{ij}(n)$, пропорциональной частной производной $\partial E(n)/\partial w_{ij}(n)$.

Градиент можно представить следующим образом:

$$\frac{\partial E(n)}{\partial w_{ii}(n)} = \frac{\partial E(n)}{\partial e_{i}(n)} \frac{\partial e_{j}(n)}{\partial y_{i}(n)} \frac{\partial y_{j}(n)}{\partial v_{i}(n)} \frac{\partial v_{j}(n)}{\partial w_{i}(n)}.$$
(15)

Построив по описанному методу модель нейронной сети, появляется возможность быстрого нахождения выборки максимального подобия и нахождения значения линейной корреляции Пирсона.

No	Дата	Значения ряда,	Прогнозные	MAE (MAPE)
	(24.03.2014), ч.	МВт/ч.	значения ряда	МВт·ч., (%)
			МВт∙ч.	
1	1:00	1,013	1,023	(0,94)
2	2:00	1,075	1,086	(1,03)
3	3:00	1,192	1,203	(0,98)
4	4:00	1,308	1,325	(1,32)
5	5:00	1,416	1,436	(1,45)
6	6:00	1,478	1,494	(1,14)
7	7:00	1,489	1,512	(1,57)
8	8:00	1,512	1,539	(1,83)
9	9:00	1,460	1,484	(1,67)
10	10:00	1,473	1,486	(0,95)
11	11:00	1,436	1,459	(1,66)
12	12:00	1,437	1,456	(1,37)
13	13:00	1,417	1,429	(0,91)
14	14:00	1,389	1,410	(1,55)
15	15:00	1,382	1,398	(1,22)
16	16:00	1,307	1,324	(1,34)
17	17:00	1,338	1,358	(1,56)
18	18:00	1,472	1,498	(1,77)
19	19:00	1,391	1,405	(1,05)
20	20:00	1,241	1,258	(1,43)
21	21:00	1,093	1,108	(1,45)
22	22:00	1,024	1,036	(1,22)
23	23:00	1,000	1,012	(1,27)
24	0:00	1,013	1,031	(1,83)

С помощью созданного СПО на основе заданной комбинированной модели получены результаты прогноза для временного ряда энергопотребления. Полученные результаты внесены в таблицу 1.

ЛИТЕРАТУРА

- 1. Draper N. Applied regression analysis. New York: Wiley, In press, 1981. 693 p.
- 2. Gheyas I. A. A Neural Network Approach to Time Series Forecasting // Proceedings of the World Congress on Engineering. London, 2009. pp. 1292–1296.
- 3. Mazengia D. H. Forecasting Spot Electricity Market Prices Using Time Series Models: Thesis for the Degree of Master of Science in Electric Power Engineering. Gothenburg: Chalmers University of Technology, 2008. 89 p.

- 4. Morariu N., Iancu E., Vlad S. A. A neural network model for time series forecasting // Romanian Journal of Economic Forecasting. 2009. No. 4. pp. 213–223.
- 5. Norizan M. Short Term Load Forecasting Using Double Seasonal ARIMA Model // Regional Conference on Statistical Sciences. Malaysia, Kelantan, 2010. pp. 57–73.
- 6. Prajakta S. K. Time series Forecasting using Holt-Winters Exponential Smoothing // Kanwal Rekhi School of Information Technology Journal. Boston, 2004. pp. 1–13.
- 7. Бокс Дж., Дженкинс Г. М. Анализ временных рядов, прогноз и управление. М.: Мир, 1974.-406 с.
- 8. Хайкин C. Нейронные сети: полный курс. M.: Вильямс, 2006. 1104 с.
- 9. Чучуева И. А. Модель прогнозирования временных рядов по выборке максимального подобия: автореф. дис. ... канд. техн. наук. Москва, 2012. 16 с.