#### ЛАРЬКИН И. С., ОВЧИННИКОВА С. М.

### АНАЛИЗ ПРИНЦИПОВ СЕПАРАЦИИ В КОТЛОАГРЕГАТАХ С ТОЧКИ ЗРЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ

**Аннотация.** В данной статье обосновывается необходимость сепарации пара и рассматриваются его принципы в котлоагрегатах. Приводится сопоставление данных принципов на предмет выявления наибольшей энергетической эффективности и применяемости в котлоагрегатах.

**Ключевые слова:** сепарационное устройство, влагосодержание, котлоагрегат, пароводяная смесь, циклон.

## LARKIN I. S., OVCHINNIKOVA S. M.

# AN ANALYSIS OF SEPARATION PRINCIPLES IN BOILERS IN TERMS OF ENERGY EFFICIENCY

**Abstract.** The article considers the steam separation and its principles in boilers. In this connection, the study presents a comparative analysis of steam separation practices to identify the best one in terms of energy efficiency and boiler applicability.

**Keywords:** separation unit, moisture, boiler, water-steam mixture, cyclone.

Сепарационные устройства котлоагрегатов предназначены для предохранения внутренних поверхностей пароперегревателя, паропроводов И теплоиспользующих аппаратов от образования отложений, вызванных содержанием в паре различных примесей. В сепараторах происходит удаление или уменьшение содержания в паре капельной влаги и растворенных в паре веществ. Сепарация капельной влаги от пара имеет значение при всех давлениях, а уменьшение солесодержания пара лишь при высоких и сверхкритических давлениях. К сепарационным устройствам предъявляется ряд требований: способность гасить кинетическую энергию поступающей в барабан пароводяной смеси с минимальным образованием мелкодисперсных капель влаги; выделение из пара капель влаги; обеспечение равномерного распределения паровой нагрузки по площади испарения и потока пара в барабане котла. С помощью сепарационных устройств можно уменьшить содержание влаги в паре до 0,1-0,15%.

В сепарационных устройствах применяются следующие принципы сепарации капель влаги из пара:

- гравитационная сепарация;
- инерционная сепарация;

- циклонная сепарация;
- пленочная сепарация;
- комбинация нескольких способов.

Для осуществления анализа принципов сепарации в котлоагрегатах с точки зрения энергетической эффективности следует рассмотреть особенности функционирования сепарационных устройств. Остановимся на основных актуальных принципах, применяемых в современном оборудовании.

Гравитационная сепарация (рисунок 1) происходит в результате движения пара в барабане котла к выходу из него. Для выравнивания скорости подъема пара по барабану в него погружают дырчатый лист 1. Для дополнительного выравнивания скорости подъема пара в барабане устанавливается пароприемный щит 2, улучшающий гравитационную сепарацию. Эффективность такой сепарации зависит от давления, размеров капель воды, скорости потока и длины пути до выхода из барабана. Изменение энергии струи смеси водапар и распределение пара происходят в пространстве с водой. Разделение влаги и пара происходит в пространстве, заполненным паром. Гравитационная сепарация осуществляется практически во всех конструкциях внутрибарабанных устройств в силу простоты конструктивных особенностей.

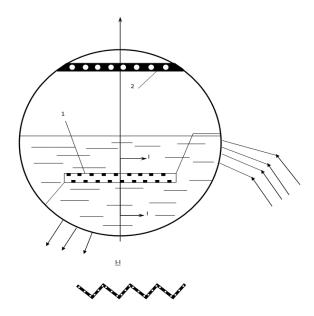



Рис. 1. Гравитационная сепарация (при подводе пароводяной смеси под уровень воды в барабане).

Инерционная сепарация (рисунок 2) происходит при значительном ускорении и последующем замедлении скорости потока пароводяной смеси. Это можно осуществить в результате установки отбойных щитков 3, создающих резкие повороты на пути пароводяной смеси, поступающей из экранных или кипятильных труб в барабан котла. Вследствие чего вода из пароводяной смеси выпадает из потока (как более плотная), а пар (как менее плотный) поднимается к выходу их барабана. Установка на пути пара жалюзийной решетки 4 (рисунок 3) улучшает сепарацию путем изменения направления движения пара, вследствие чего происходит дополнительное разделение капель воды и пара.

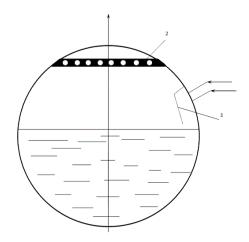



Рис. 2. Инерционная сепарация (при подводе пароводяной смеси в паровой объем барабана).

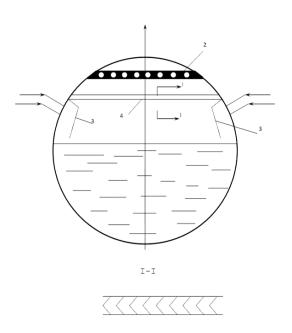



Рис. 3. Инерционная сепарация с жалюзийной решеткой.

На инерционном принципе осуществляется и циклонная сепарация (рисунок 4), действующая за счет центробежных сил, оказывающих влияние на капли воды. Пароводяная смесь подается в центробежные циклоны 5, где происходит закручивание потока, и вода отбрасывается к стенкам и стекает в водяное пространство барабана, а отделенный от капелек воды пар выходит из циклона. Циклонная сепарация очень эффективна. Циклоны устанавливают как внутри, так и вне барабана.

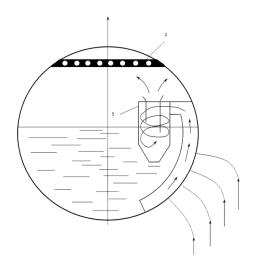



Рис. 4. Циклонная сепарация (инерционная с циклонами).

Пленочная сепарация происходит вследствие налипания капелек воды, не обладающих инерционными свойствами, на твердую увлажненную развитую поверхность при взаимодействии с пароводяным потоком. В результате такого взаимодействия образуется сплошная водяная пленка, которая достаточно прочно держится на стенках и не срывается паром, но при вертикальном или наклонном расположении стенки спокойно стекает в водяное пространство барабана. Пленочную сепарацию используют в циклонных и швеллерковых сепараторах (рисунок 5), где поверхность для образования пленки представляет собой систему наклонно расположенных и входящих один в другой швеллерков 6, а пленочная сепарация сочетается с инерционной при прохождении пара между швеллерками, где отбрасываются наиболее крупные капли воды.

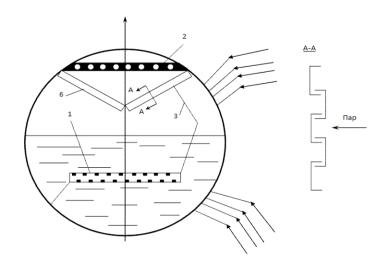



Рис. 5. Пленочная сепарация.

При изучении данных принципов сепарации можно сделать вывод о наибольшей энергетической эффективности сепаратора, содержащего все рассмотренные принципы сепарации, а именно пленочной, инерционной (циклонной) и гравитационной. Такая система сепарации пароводяной смеси обеспечивает наиболее качественное отделение капелек влаги от пара. Помимо увеличения эффективности сепарации, такой принцип способствует снижению или полному предотвращению пенообразования, а также уменьшению материалоемкости сепарационных устройств. При комбинированном сочетании принципов сепарации происходит уменьшение площади и массы оборудования вследствие того, что по мере увеличения эффективности сепарационного устройства отпадает необходимость использования дополнительных средств удаления влаги и дополнительных сепараторов.

#### ЛИТЕРАТУРА

- 1. Продукты и решения для автоматизации процессов управления и учета. [Электронный ресурс]. Режим доступа: http://www.ma-samara.com (дата обращения: 20.06.2013).
- 2. База патентов на изобретения РФ. [Электронный ресурс]. Режим доступа: http://ru-patent.info (дата обращения: 20.06.2013).
- 3. Водоснабжение, водоподготовка и очистка сточных вод. [Электронный ресурс]. Режим доступа: http://stringer46.narod.ru (дата обращения: 20.06.2013).
- 4. Мынкин К. П. Сепарационные устройства паровых котлов. М.: Энергия, 1971. 192 с.