ЕВИШЕВ А. В., ИВЕНИН С. В.

ОПРЕДЕЛЕНИЕ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ В КАРБИДЕ КРЕМНИЯ ОПТИЧЕСКИМ МЕТОДОМ

Аннотация. В статье проводятся результаты исследования ширины запрещенной зоны карбида кремния оптическим методом. Для его определения использовали спектрофотометр СФ-46. Образцы карбида кремния были разных политипов, имели разный тип проводимости, а также были получены разными методами (Лели и ЛЭТИ).

Ключевые слова: карбид кремния, коэффициент поглощения, коэффициент пропускания, ширина запрещенной зоны, коэффициент отражения, кристаллическая структура.

YEVISHEV A. V., IVENIN S. V.

DETERMINATION OF THE WIDTH OF THE SILICON CARBIDE FORBIDDEN ZONE BY THE OPTICAL METHOD

Abstract. The article presents the results of determination of the width of the silicon carbide forbidden zone by the optical method. The spectrophotometer SF-46 was used. The samples of silicon carbide were of different polytypes and had different types of conductivity. Also different methods (Lely and LETI) were used to obtain the samples tested.

Keywords: silicon carbide, absorption coefficient, transmission coefficient, width of the forbidden zone, reflection coefficient, crystal structure.

Карбид кремния (SiC) – бинарное неорганическое соединение, в природе встречается черезвычайно редко в виде минерала – муассанита.

В карбиде кремния возможны два типа кристаллической решетки: кубическая (3C–SiC) и гексагональная (2H–SiC), а также более сложные структуры, состоящие из комбинаций кубических и гексагональных слоев. В настоящее время известно около 200 политипов карбида кремния, среди которых наиболее исследованы 4H–SiC и 6H–SiC, а также ранее названные простейшие конфигурации. Некоторые параметры ряда политипов карбида кремния приведены в таблице 1.

Одним наиболее важных параметров п/п материалов является ширина запрещенной зоны, которая в различных политипов карбида кремния может меняться в широких пределах от 2,2 до 3,3 эВ.

Таблица 1.

α \circ			_	
Своиства	основных	политипов	кароила	кремния
CBCIICIBU	CUITOBIIDIA	HOMITTING	паропда	TO COMMITTEE

Политип	3 <i>C</i>	4 <i>H</i>	6 <i>H</i>
Кристаллическая структура	Кубическая	Гексаганальная	Гексаганальная
Постоянные решетки ($\overset{0}{\mathbf{A}}$)	4,3596	3,073; 10,053	3,08; 15,12
Плотность (Γ /c M^3)	3,21	3,21	3,21
Ширина запрещенной зоны (эВ)	2,36	3,23	3,05
МОС (ГПа)	250	220	220
Теплопроводность (Вт/см · К)	3,6	3,7	4,9

Существует несколько методов определения ширины запрещенной зоны в полупроводниках: по температурной зависимости носителей заряда (или удельной электропроводности); по спаду фотопроводимости; по краю основной полосы оптического поглощения и другие методы [1]. Использование метода оптического поглощения является предпочтительным, так как не предъявляется особых требований к форме и размерам образца и обеспечивается достаточно высокая точность.

Суть метода заключается в том, что пучок монохроматического света, направленный на поверхности полупроводника, претерпевает частично отражение, а проходя через слой проводника-поглощение. В результате интенсивность света уменьшается. Относительное изменение интенсивности света в слое единичной толщины называется коэффициентом поглощения. Величина коэффициента поглощения зависит от длины волны (λ) падающего излучения, а зависимость $\alpha = f(\lambda)$ – называется спектром поглощения.

Коэффициент поглощения α может быть рассчитаны из измерений коэффициента отражения (R) и коэффициента пропускания (T) по формуле [2]:

$$\alpha = \frac{1}{d} \ln \frac{(1-R)^2}{T} \tag{1}$$

где d – толщина образца, R – коэффициент отражения, T – коэффициент пропускания.

Формула (1) справедлива при T<10%. Если T>10%, то для расчета коэффициента поглощения необходимо использовать соотношение (2):

$$T = \frac{(1 - R)^2 \exp(-\alpha d)}{1 - R^2 \exp(-2\alpha d)}$$
 (2)

Для определения ширины запрещенной зоны оптическим методом наибольшее значение имеет собственные и фундаментальные поглощение света, обусловленное переходами электронов из валентной зоны в зону проводимости. Собственное поглощение возможно в том случае, если энергия фотонов (квантов света) превышает ширину запрещенной зоны. В зависимости от ширины запрещенной зоны оно проявляется в видимой или ближней инфракрасной области спектра. Карбид кремния имеет запрещенную зону В диапазоне $\Delta E_g = 2, 2-3, 3$ эB . Следовательно, край полосы находится в диапазоне длин воли 0.35-0.55мкм, т. е. в видимой области спектра.

При переходе электрона из валентной зоны в зону проводимости под действием кванта света возможны два типа переходов. Переходы, в которых участвует только фотон и электрон называется прямыми, а переходы в которых кроме фотона и электрона участвует фонон, называется непрямыми, т.е. изменение энергии электрона при поглощении кванта света сопровождается изменением энергии кристаллической решетки.

Для прямых переходов зависимость коэффициента поглощения от энергии кванта света можно записать в виде [3]:

$$\alpha = B(h\nu - \Delta E_g)^{1/2}$$
, если hv>Eg, (3)

 $\Delta E_{\scriptscriptstyle g}$ – ширина запрещенной зоны,

hv – энергия канта света,

В – некоторая константа.

Экстраполируя меньший участок зависимости $\alpha^2 = f(hv)$ до пересечения с осью hv можно определить величину запрещенной зоны для прямых переходов.

В случае непрямых переходов зависимость коэффициента поглощения от энергии фотона носит более сложный характер, который в общем случае может быть описан функцией: $\alpha^{1/2} = f(hv)\,, (4) \text{ если } \Delta E_g - E_\phi < hv < \Delta E_g + E_\phi\,, \text{ где}$

 E_{ϕ} – энергия фотона, который поглощается или испускается при непрямых переходах.

Оптические исследования основных политипов карбида кремния проведенные различными авторами [4] показали, что для них характерны непрямые переходы. Типичный график зависимости $\alpha^{1/2} = f(hv)$ имеет два прямолинейных участка, как показана на рис. 1.

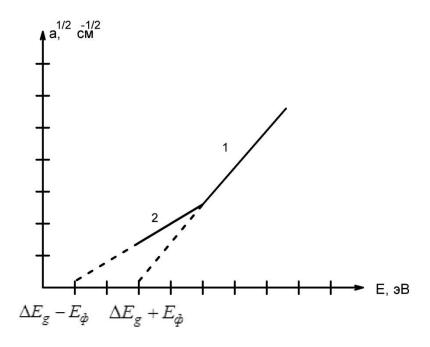


Рис. 1 Зависимость коэффициента поглощения от энергии фотона в полупроводниках с непрямыми переходами.

Длина отрезка между точками $\Delta E_g - E_\phi$ и $\Delta E_g + E_\phi$ равна $2E_\phi$, а посередине находится точка $hv = \Delta E_o$.

Для проведения исследований были взяты три образца карбида кремния. Образец № 1 получен методом Лели неизвестного политипа, толщиной 1500 мкм, имеющий форму шестигранника с размерами $16 \times 6\,\text{мm}$, n-типа проводимости, легированный азотом с естественными полированными гранями. Образцы № 2 и № 3 получены методом ЛЭТИ, 6Н–политипа, имеют форму дисков диметром 24 мм, с двухсторонней полировкой и полированной с помощью алмазных паст. Образец № 2 — р-типа проводимости с концентрацией акцепторов $2 \cdot 10^{18}\,\text{сm}^{-3}$, толщина образца 500 мкм. Образец № 3 — n-типа проводимости с концентрацией доноров $1 \cdot 10^{17}\,\text{сm}^{-3}$, толщина образца 1000 мкм.

Для построения спектров поглощения по формулам (1) и (2) были измерены коэффициенты пропускания Т всех образцов в диапазоне 0,35-0,55 мкм на спектрофотометре $C\Phi - 46$. Принцип измерения коэффициента пропускания на спектрофотометре $C\Phi - 46$ основан измерении отношения двух световых потоков: потока прошедшего через исследуемый образец и потока, падающего на образец. Результаты измерений представлены в таблице 2 и на рисунке 2.

Таблица 2.

Экспериментально измеренные значения

а) образец № 1, d = 1,5 мм

T, %	0,58	0,84	0,88	0,99	1,3	2,3	7,6	12	15,3	16,3	15,3	14,6	13,9	12,8
$\lambda_{_{, ext{HM}}}$	400	410	421	430	440	450	460	480	495	510	532	540	550	560
hv, эВ	3	2,92	2,85	2,79	2,72	2,66	2,6	2,5	2,42	2,35	2,25	2,22	2,18	2,14

б) образец № 2, d = 0,5 мм

T, %	0,21	4,38	7,14	10,42	12,7	14,1	14,5	14,4	13,9	19,1	48,5	57,2	60,1	62,3	63,9
λ , $_{ m HM}$	400	410	415	420	425	430	435	440	445	450	455	460	465	470	475
hv, эВ	3	2,92	2,89	2,85	2,82	2,79	2,75	2,72	2,69	2,66	2,63	2,6	2,58	2,55	2,52
T, %	66	72,9	72,3	71	70	68,3	65,6	62,9	57,8	53,4	49,7	45,8			
λ , HM	480	490	495	500	505	510	515	520	530	540	550	560			
hv, эВ	2,5	2,44	2,42	2,4	2,37	2,35	2,33	2,3	2,26	2,22	2,18	2,14			

в) образец № 3, d = 1 мм

T,%	31,3	26,9	23,2	19,9	14,8	10,9	8,1	6	4,4	3,3	3,3
$\lambda_{, \text{HM}}$	828,5	578,2	429,5	419,5	404,5	402,5	400	399,5	399,5	363,4	328
hv, эВ	1,44	2,07	2,79	2,86	2,96	2,98	3	3	3	3,3	3,65

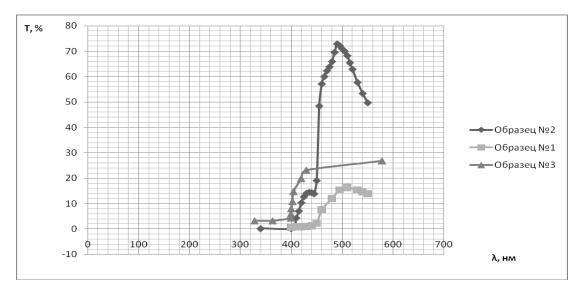


Рис. 2 Спектры пропускания образцов SiCэ.

Как видно из рисунка 2, край полосы собственного поглощения у всех 3-х образцов находиться в области длин волн 380–460 нм. Для более точного определения края полосы поглощения и ширины запрещенной зоны необходимо рассчитать коэффициент поглощения α и построить графики функции $\alpha^{1/2} = f(hv)$.

Исследования отражательной способности различных политипов карбида кремния показали, что коэффициент отражения R в видимой и ближней инфракрасной области спектра есть величина постоянная и равная 0,185 [4]. Результаты расчета α от всех 3-х образцов в координатах $\alpha^{1/2} = f(hv)$ представлены на рисунках 3, 4, 5.

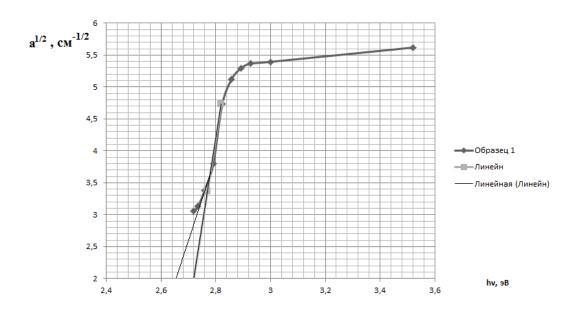


Рис. З Зависимость коэффициента поглощения от энергии фотона для образца № 1.

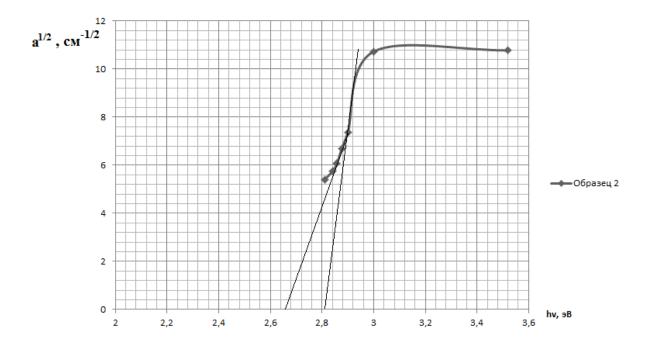


Рис. 4 Зависимость коэффициента поглощения от энергии фотона для образца № 2.



Рис. 5 Зависимость коэффициента поглощения от энергии фотона для образца № 3.

Экстраполируя прямолинейные участки на графиках рисунок. 3, 4, 5 по пересечению с осью абсцисс получаем значения оптической ширины запрещенной зоны, которая равна: для первого образца – 2,72 эВ, для второго – 2,81 эВ, для третьего образца – 2,94 эВ. Значения ΔE_g для второго и третьего образца хорошо соответствуют значения ΔE_g определенным различными авторами для 6H–SiC. Значение ΔE_g для первого образца равна 2,72 эВ и поэтому можно утверждать, что первый образец является 15R–SiC политипом.

ЛИТЕРАТУРА

- 1. Павлов Л. П. Методы измерения параметров полупроводниковых материалов. М.: Высш. шк., 1987. 239 с.
- 2. Уханов Ю. И. Оптические свойства полупроводников. М.: Наука, 1977. 366 с.
- 3. Панков Ж. Оптические процессы в полупроводниках. М.: Мир, 1973. 458 с.
- 4. Добролеж С. А., Зубкова С. М., Кравец В. А. Карбид кремния. Киев: Гос. изд-во техн. лит. УССР, 1963. - 316 с.