НИКУЛИН А. В., НИКУЛИН В. В.

МОДЕЛЬ БЫСТРОДЕЙСТВУЮЩЕГО УПРАВЛЯЕМОГО ГЕНЕРАТОРА КВАДРАТУРНЫХ ГАРМОНИЧЕСКИХ СИГНАЛОВ

Аннотация. Рассмотрен вопрос проектирования модели быстродействующего управляемого генератора квадратурных гармонических сигналов в системе схемотехнического моделирования Multisim. Продемонстрирован порядок моделирования и его результаты.

Ключевые слова: квадратурный генератор, гармонический сигнал, перемножитель, управляемый интегратор, виртуальная лабораторная работа.

NIKULIN A. V., NIKULIN V. V.

HIGH-SPEED MODEL CONTROLLED OSCILLATOR FOR GENRATING QUADRATURE HARMONIC SIGNALS

Abstract. The article considers the designing of a high-speed model controlled oscillator for generating quadrature harmonic signals in the circuit simulation system Multisim. The simulation procedure description is included. The simulation results are presented.

Keywords: quadrature oscillator, harmonic signal, multiplier, controlled integrator, virtual lab class.

Постановка задачи. Неотъемлемой частью учебного процесса в вузе при изучении технических дисциплин является лабораторный практикум, задачей которого является формирование у студентов практических навыков работы с оборудованием, получения и обработки экспериментальных данных, умения планировать эксперимент, анализировать и сопоставлять полученные результаты с литературными данными [1–5]. Одним из базовых курсов подготовки студентов по направлению инфокоммуникационные технологии и системы связи является «Теория электрической связи». В этом курсе большой раздел посвящен изучению генераторов электрических сигналов.

В радиоэлектронике, автоматике, системах связи, измерительной технике находят применение управляемые генераторы квадратурных гармонических сигналов [6–9, 11–14]. При этом квадратурный сигнал может использоваться как непосредственно, например, в квадратурном модуляторе, так и для формирования других сигналов. Например, из него можно получить трехфазный сигнал, для получения которого требуются лишь инвертирующий и вычитающий сумматоры.

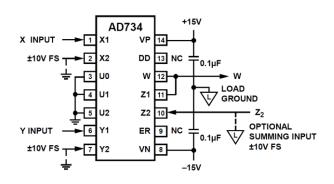
При перемножении квадратурных сигналов можно получить удвоение частоты [16]. Также не сложно получить сдвинутый на 90° сигнал удвоенной частоты.

Важное место среди устройств обработки сигналов, предназначенных для систем связи, занимают квадратурные модуляторы и демодуляторы: аналоговые и цифровые, используемые в цепях высокой частоты (ВЧ) и ПЧ, соответственно. Они являются универсальными устройствами, которые могут применяться независимо от вида модуляции, но с дополнительным преобразованием модулирующего и демодулируемого сигналов. Квадратурные модуляторы — устройства балансного типа, не требующие фильтрации для выделения суммарной или разностной составляющей модулированного сигнала. Они могут также использоваться в качестве повышающих преобразователей частоты.

Частотно-манипулированные (Frequency Shift Keying, FSK) сигналы — одни из самых распространенных в современной цифровой связи. Это обусловлено прежде всего простотой их генерирования и приема, ввиду нечувствительности к начальной фазе. На практике получила распространение FSK модуляция с непрерывной фазой CPFSK. FSK сигналы являются частным случаем сигналов с частотной модуляцией (FM) при модулирующем сигнале в виде двоичной битовой последовательности. Таким образом, для модуляции FSK можно использовать схему FM модулятора на базе универсального квадратурного модулятора [19].

Квадратурный сигнал используется также при модуляции с одной боковой полосой (Single Side Band, SSB), которая широко применяется в аппаратуре каналообразования с целью повышения эффективности использования спектра канала и мощности передающей радиоаппаратуры.

На базе генераторов квадратурных гармонических сигналов достаточно просто реализовать функциональные генераторы [18].

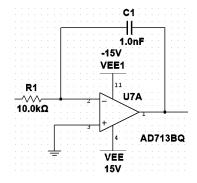

Для измерителей АЧ и ФЧ характеристик приборов кроме высокой точности формы сигнала требуется высокая скорость перестройки частоты. Такие характеристики имеет разрабатываемый генератор квадратурных сигналов [6–11].

Таким образом, разработка модели и исследование быстродействующего управляемого генератора квадратурных гармонических сигналов для лабораторных применений по курсу «Общая теория связи» является актуальной задачей.

Построение модели генератора. В качестве прототипа управляемого генератора квадратурных сигналов используется структура, заявленная в патенте [17].

Для построения модели генератора в среде схемотехнического моделирования Multisim необходимо реализовать блоки выполняющие операции суммирования, умножения, извлечения корня. Подобные блоки можно построить на основе микросхемы аналогового перемножителя. В библиотеке Multisim имеется модель аналогового перемножителя AD734AQ.

Управляемый интегратор состоит из последовательно включенных умножителя и интегратора. Умножитель выполнен на микросхеме AD734AQ включенной по типовой схеме, показанной на рисунке 1. Величина выходного напряжения определяется по формуле W = (X1-X2)(Y1-Y2)/10V+Z2. Интегратор выполнен на операционном усилителе AD713BQ (см. рисунок 2).



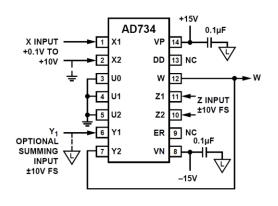

Рис. 1. AD734AQ в режиме умножителя.

Рис. 2. Интегратор на AD713BQ.

На один из входов перемножителя поступает сигнал с цифрового задатчика частоты. Этот сигнал – постоянное напряжение в диапазоне от 1 до 10 вольт, что позволяет линейно изменять частоту.

Аналогично построен второй интегратор, сигнал на выходе которого повернут относительно первого на 90°. Назовем их сигналами синуса и косинуса соответственно. Сигналы поступают на делители напряжения. Делители построены на микросхеме AD734AQ включенной по типовой схеме в режиме деления (см. рисунок 3). При этом величина сигнала на выходе определяется по формуле W=10(Z2–Z1)/(X1–X2)+Y1, где Z1, Z2, X1, X2 – значения входных напряжений. Вход Y1, Z2 заземляются, а на вход X1 подается напряжение 0,1 В.

Сигналы синуса и косинуса так же идут на квадраторы, построенные на микросхеме AD734AQ включенной по типовой схеме в режиме возведения в квадрат. Для этого один и тот же сигнал подается на входы X1 и Y1. Сигналы с квадраторов поступают на неинвертирующий сумматор с коэффициентом суммирования 1, выполненный на операционном усилителе AD713BQ (см. рисунок 4).

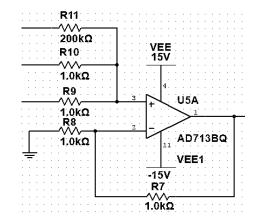


Рис. 3. AD734AQ в режиме делителя.

Рис. 4. Неинвертирующий сумматор на AD713BQ.

Далее сигнал поступает на блок извлечения корня. Блок построен так же на микросхеме AD734AQ включенной по типовой схеме в режиме извлечения корня (см. рисунок 5). При этом величина сигнала на выходе определяется по формуле $W = \sqrt{(10V)(Z_2 - Z_1)} + S$, где Z1, Z2 – значения входных напряжений. В схеме используется диод, через который выходное напряжение W подается на Y2 и X1. Входы X2, Y1, U0, U1, U2 заземлены, а на Z1 подается опорное напряжение.

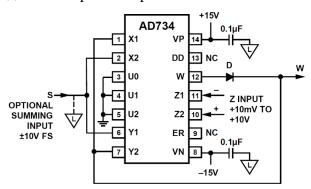
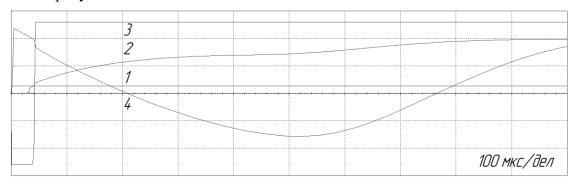
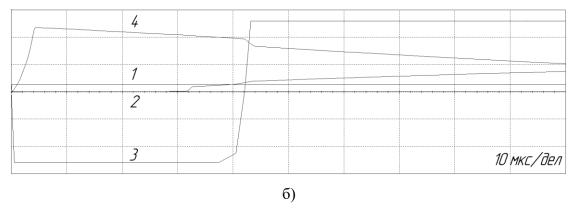




Рис. 5. AD734AQ в режиме извлечения корня.

Сигнал с блока извлечения корня сравнивается с заданным при помощи компаратора, выполненного на операционном усилителе AD713BQ. Это позволяет быстро запустить генератор при включении питания. Диаграммы сигналов при включении генератора показаны на рисунке 6.

1, 2 — сигналы на входе компаратора; 3 — сигнал на выходе компаратора; 4 — сигнал на выходе сумматора.

Рис. 6. Сигналы на компараторе и сумматоре при запуске и различной временной развертке.

Для большей наглядности диаграммы имеют различные временные развертки. 100 мкс/дел (рисунок 6а) и 10 мкс/дел (рисунок 6б). Видно, что после срабатывания компаратора (сигнал 3) величина напряжения на выходе сумматора (см. рисунок 7) уменьшается. Что уменьшает величину входного воздействия на интегратор и останавливает рост амплитуды генерируемого сигнала.

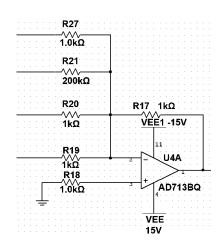


Рис. 7. Инвертирующий сумматор на AD713BQ.

Результаты моделирования. На рисунке 8 показаны диаграммы выходных сигналов в момент скачкообразного изменения задающего напряжения. Изменение частоты сигнала пропорционально изменению задающего напряжения, эта зависимость линейна. Переходный процесс практически отсутствует.

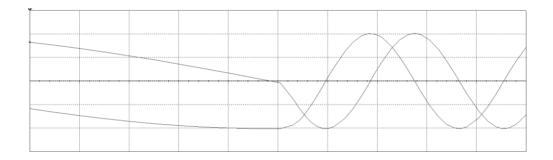


Рис. 8. Выходные сигналы при изменении входного напряжения.

Заключение. Модель схемы генератора квадратурных гармонических сигналов, построенная в программе схемотехнического моделирования Multisim, позволяет сделать следующие выводы:

- разработанный формирователь обладает высокими динамическими свойствами (быстродействием в пусковом режиме и при быстрых переключениях с одной частоты на другую).
- формирователь может быть выполнен в интегральном или гибридном исполнении с использованием современных операционных усилителей и прецизионных аналоговых перемножителей, не требующих наличия подстроечных элементов.
- результаты моделирования [20] близки к результатам, полученным аналитическим методом [12].

ЛИТЕРАТУРА

- 1. Дубровин В. С., Никулин В. В. Роль виртуальных лабораторных работ в повышении качества подготовки бакалавров по направлению «Инфокоммуникационные технологии и системы связи» // Интеграция образования. 2014. № 1 (74). С. 109—115.
- 2. Никулин В. В., Дубровин В. С. Применение операционных усилителей. Лабораторный практикум. – Саранск: Изд-во Мордов. ун-та, 2010. – 48 с.
- 3. Никулин В. В., Шишов О. В. Моделирование и расчет типовых узлов аналоговой схемотехники: учебное пособие. Саранск: Изд-во Мордов. ун-та, 2006. 120 с.
- 4. Никулин А. В., Никулин В. В. О проектировании лабораторных работ по курсу «Основы схемотехники телекоммуникационных устройств» // Проблемы передачи информации в инфокоммуникационных системах. Сборник докладов и тезисов VI Всероссийской научно-практической конференции. Волгоград, 2015. С. 81–84.

- 5. Никулин А. В., Никулин В. В. О проектировании лабораторных работ по курсу «Основы схемотехники телекоммуникационных устройств» [Электронный ресурс] // Огарев-Online. Раздел «Технические науки». 2015. № 11. Режим доступа: http://journal.mrsu.ru/arts/o-proektirovanii-laboratornyx-rabot-po-kursu-osnovy-sxemotexniki-telekommunikacionnyx-ustrojstv.
- 6. Дубровин В. С., Никулин В. В., Никулин А. В. Безынерционная система управления формирователя квадратурных гармонических сигналов // Измерительная и вычислительная техника в технологических процессах. Вимірювальна та обчислювальна техніка в технологічних процессах. 2013. № 2 (43). С. 98—101.
- 7. Дубровин В. С. Управляемый квадратурный генератор с многоконтурной системой стабилизации // Проблемы передачи информации в инфокоммуникационных системах. Сборник докладов и тезисов Всероссийской научно-практической конференции. 2013. С. 33–37.
- 8. Дубровин В. С., Никулин В. В. Способ построения управляемых функциональных генераторов // Т-Сотт: Телекоммуникации и транспорт. 2013. Т. 7. № 6. С. 22–27.
- 9. Дубровин В. С., Управляемый формирователь квадратурных гармонических сигналов // Вестник Поволжского государственного технологического университета. Серия: Радиотехнические и инфокоммуникационные системы. 2013. № 1 (17). С. 5—12.
- 10. Дубровин В. С., Никулин В. В. Способ формирования линейно изменяющегося сигнала // Измерительная и вычислительная техника в технологических процессах. Вимірювальна та обчислювальна техніка в технологічних процессах. 2013. № 4 (45). С. 72—76.
- 11. Пат. 2551824 Российская Федерация, МПК Н 03 В 27/00, Н 03 В 5/20. Управляемый генератор квадратурных сигналов / В. С. Дубровин, А. М. Зюзин; заявители В. С. Дубровин, А. М. Зюзин; патентообладатель: Частное образовательное учреждение дополнительного профессионального образования «Саранский Дом науки и техники Российского Союза научных и инженерных общественных объединений». № 2014131562/08; заявл. 29.07.2014; опубл. 27.05.2015, Бюл. № 15 13 с.
- 12. Дубровин В. С. Генератор ортогональных сигналов // Современные методы и средства обработки пространственно-временных сигналов. V Всероссийская научно-техническая конференция, 29-30 мая 2007 г. Пенза, 2007. С. 154-156.
- 13. Дубровин В. С. Генератор гармонических колебаний на базе управляемого полосового фильтра второго порядка // Вестник Астраханского государственного

- технического университета. Серия: Управление, вычислительная техника и информатика. $-2015. N_{\odot} 5. C. 79-87.$
- 14. Дубровин В. С. Система стабилизации управляемого генератора на базе квазиконсервативного звена. // Южно-сибирский научный вестник. -2012. -№ 2. C. 30–34.
- 15. Дубровин В. С. Способы построения управляемых функциональных генераторов. // Austrian Journal of Technical and Natural Sciences. 2014. № 7-8. С. 131–137.
- 16. Пат. 80634 Российская Федерация, МПК Н 03 В 27/00, Н 03 В 19/06. Умножитель частоты квадратурных сигналов / В. С. Дубровин, А. М. Зюзин; заявители В. С. Дубровин, А. М. Зюзин; патентообладатель: Частное образовательное учреждение дополнительного профессионального образования «Саранский Дом науки и техники Российского Союза научных и инженерных общественных объединений». \mathbb{N} 2008143820/22; заявл. 05.11.2008; опубл. 10.02.2009, Бюл. \mathbb{N} 4 2 с.
- 17. Пат. 2506692 Российская Федерация, МПК Н 03 В 27/00. Управляемый генератор / В. С. Дубровин; заявитель: В. С. Дубровин; патентообладатель: В. С. Дубровин. № 2012137334/08; заявл. 31.08.2012; опубл. 10.02.2014, Бюл. № 4 22 с.
- 18. Пат. 104402 Российская Федерация, МПК Н 03 В 27/00. Функциональный генератор / В. С. Дубровин, А. М. Зюзин; заявители В. С. Дубровин, А. М. Зюзин; патентообладатель: Частное образовательное учреждение дополнительного профессионального образования «Саранский Дом науки и техники Российского Союза научных и инженерных общественных объединений». № 2011100735/09; заявл. 12.01.2011; опубл. 10.05.2011, Бюл. № 13 2 с.
- 19. Дубровин В. С., Кемайкин Д. М., Володин С. С. Виртуальная лабораторная работа «Двухканальный формирователь частотно-манипулированных сигналов» // Тенденции и перспективы развития науки XXI века. Сборник статей Международной научно-практической конференции. 2016. С. 188–195.
- 20. Никулин А. В., Никулин В. В. Построение модели быстродействующего управляемого генератора квадратурных гармонических сигналов // Фундаментальные проблемы системной безопасности. Материалы III школы-семинара молодых ученых: в 2 частях. Ч. 1. Елец: Изд-во Елецкий государственный университет им. И. А. Бунина, 2016. С. 135—139.