СТЕНИН И. В., ШАМАНАЕВ П. А., ГОРШУНОВА Т. А. АЛГОРИТМ ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ ДИНАМИЧЕСКОЙ СИСТЕМЫ ВТОРОГО ПОРЯДКА С МАЛЫМИ ВОЗМУЩЕНИЯМИ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

Аннотация. Задача идентификации параметров линейных динамических систем второго порядка с малыми возмущениями по экспериментальным данным решается путем сведения ее к задаче минимизации квадратичного функционала с ограничениями в виде нелинейных алгебраических уравнений. Проведены вычисления на трех экспериментальных наборах данных, соответствующих трем типам особой точки линейной системы: седло, узел, центр.

Ключевые слова: идентификация параметров, обыкновенные дифференциальные уравнения, минимизация.

STENIN I. V., SHAMANAEV P. A., GORSHUNOVA T. A. ALGORITHM OF PARAMETER IDENTIFICATION OF SECOND-ORDER DYNAMICAL SYSTEM WITH SMALL PERTURBATIONS ACCORDING TO EXPERIMENTAL DATA

Abstract. The problem of identifying the parameters of the second-order linear dynamical systems with small perturbations according to experimental data is solved by reducing it to the problem of minimizing a quadratic functional with constraints in the form of nonlinear algebraic equations. The calculations were carried out on three experimental data sets corresponding to the three types of singular points of a linear system: the saddle, the node, and the center.

Keywords: identification of parameters, ordinary differential equations, minimization.

Рассмотрим линейную систему обыкновенных дифференциальных уравнений с малыми возмущениями вида

$$\begin{cases} \frac{dx_1}{dt} = \theta_1 x_1 + \theta_2 x_2 + \varepsilon_1 x_1 \\ \frac{dx_2}{dt} = \theta_3 x_1 + \theta_4 x_2 + \varepsilon_2 x_2 \end{cases}$$
 (1)

где $x_i \in \mathbb{R}$, i=1,2 — зависимые переменные, $t \in [0,b]$ — независимая переменная, b>0, $\theta_k \in \mathbb{R}$, $k=1,\ldots,4$ — неизвестные параметры, ε_j (j=1,2) — достаточно малые вещественные параметры.

Обозначим через $x_j(t,\theta)-j$ -компоненту решения системы (1), j=1,2, зависящую от векторного параметра $\theta=column(\theta_1,\theta_2,\theta_3,\theta_4)$.

Пусть при некоторых фиксированных значениях $\theta_k, k=1,...,4$, решение системы (1) удовлетворяет задаче Коши с начальными условиями:

$$x_1^{(1)} = x_1(0), \ x_2^{(1)} = x_2(0).$$
 (2)

Пусть так же по переменной x с шагом $\tau = \frac{b}{N}$ на равномерной сетке

$$t_1 = 0, ..., t_{i+1} = t_i + \tau, ..., t_N = b,$$
 (3)

для экспериментальных данных справедливы соотношения

$$\tilde{x}^{(i)} = x^{(i)} + \varepsilon^{(i)}, \quad i = 1, ..., N,$$
 (4)

где $\tilde{x}^{(i)} = column(\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}), \quad x^{(i)} = column(x_1^{(i)}, x_2^{(i)}), \quad x_j^{(i)} = x_j(t_i, \theta)$ — значение компоненты решения системы (1) в точке t_i при фиксированном значении векторного параметра θ , $\varepsilon^{(i)} = column(\varepsilon_{i1}, ..., \varepsilon_{iN})$ — вектор, элементы которого являются случайными величинами, имеющими стандартное нормальное распределение, то есть $\varepsilon_{ij} \in N(0,1), \quad i = \overline{1,N}, j = 1,2$.

Ставится задача идентификации параметров системы вида (1), заключающаяся в нахождении таких оценок $\hat{\theta}_k$ параметров θ_k , k=1,...,4, при которых решение задачи (1) приближается экспериментальными данными $\{\tilde{x}^{(i)},\ i=\overline{1,N}\}$ в смысле метода наименьших квадратов [1].

Заменим уравнение (1) симметричной разностной схемой [2] на сетке (3)

$$\frac{x_1^{(i+1)} - x_1^{(i)}}{\tau} = \frac{1}{2} (f_{i,1} + f_{i+1,1}),$$

$$\frac{x_2^{(i+1)} - x_2^{(i)}}{\tau} = \frac{1}{2} (f_{i,2} + f_{i+1,2}),$$

$$i = \overline{1, N-1}.$$
(5)

где

$$f_{i,1} = f_1(x^{(i)}, \theta) \equiv \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \varepsilon_1 x_1^{(i)},$$

$$f_{i,2} = f_2(x^{(i)}, \theta) \equiv \theta_3 x_1^{(i)} + \theta_4 x_2^{(i)} + \varepsilon_2 x_2^{(i)}.$$

Вводя обозначения [3]

$$z = column(x^{(N)}, \theta), \quad x^{(N)} = column(x^{(1)}, ..., x^{(N)}),$$
 $\widetilde{z} = column(\widetilde{x}^{(N)}, o_4), \quad \widetilde{x}^{(N)} = column(\widetilde{x}^{(1)}, ..., \widetilde{x}^{(N)}),$ o_4 — нулевой вектор размерности 4,

получим

$$\boldsymbol{x}^{(N)} = H_1 z, \ \widetilde{\boldsymbol{x}}^{(N)} = H_1 \widetilde{z},$$

где

$$H_1 = [I_{2N} : O_{2N \times 4}], \quad H_2 = \frac{1}{N} H_1^T H_1,$$

здесь I_{2N} — единичная (2N × 2N)-матрица, $O_{2N\times 4}$ — нулевая (2N × 4)-матрица.

Тогда, согласно [3–5], задача идентификации параметров может быть сформулирована как задача минимизации квадратичного функционала с ограничениями в виде нелинейных алгебраических уравнений

$$\begin{cases}
\min_{z} m(z), & m(z) = \frac{1}{2}(H_{2}z, z) - (H_{2}\tilde{z}, z) \\
T(z) = h & . \\
g(z) = 0
\end{cases}$$
(6)

Здесь введены следующие обозначения: $T = [T_1 \ T_2, \dots, T_N, T_\theta] - (2 \times (2N+4))$ — матрица, T_i , $i = \overline{2,N}$ — нулевые (2×2) — матрицы, $T_\theta - (2 \times 4)$ — матрица;

$$g(z) = column(g_{1}(z), ..., g_{N}(z)), \ g_{i}(z) = column(g_{i1}(z), g_{i2}(z)), \ i = \overline{1, N},$$

$$g_{i1}(z) = g_{i1}(\boldsymbol{x}^{(N)}, \theta) \equiv$$

$$\equiv \left(1 + \frac{\tau}{2}(\theta_{1} + \varepsilon_{1})\right) x_{1}^{(i)} + \frac{\tau}{2}\theta_{2} x_{2}^{(i)} - \left(1 - \frac{\tau}{2}(\theta_{1} + \varepsilon_{1})\right) x_{1}^{(i+1)} + \frac{\tau}{2}\theta_{2} x_{2}^{(i+1)}, \tag{7}$$

$$g_{i2}(z) = g_{i2}(\mathbf{x}^{(N)}, \theta) \equiv$$

$$\equiv \frac{\tau}{2} \theta_3 x_1^{(i)} + \left(1 + \frac{\tau}{2} (\theta_4 + \varepsilon_2)\right) x_2^{(i)} + \frac{\tau}{2} \theta_3 x_1^{(i+1)} - \left(1 - \frac{\tau}{2} (\theta_4 + \varepsilon_2)\right) x_2^{(i+1)}. \tag{8}$$

Заметим, что разностная схема (5) с учетом обозначений (7)-(8) может быть записана в виде

$$g(z) = 0.$$

Для решения задачи (6) воспользуемся алгоритмом [3], основанным на аппроксимации исходной задачи последовательностью квадратичных задач минимизации с линейными ограничениями. На каждом шаге разреженная система линейных алгебраических уравнений большой размерности решалась с использованием метода сопряженных градиентов [4].

Вычисления проводились на трех наборах экспериментальных данных $\tilde{x}^{(i)}$, $i=\overline{1,N}$, отличающихся от приближенных решений с начальными данными $x_1(0)=1$, $x_2(0)=1$ системы (1) на случайные величины $\varepsilon_{ij}\in N(0,1)$ (j=1,2), имеющие стандартное нормальное распределение. Каждое приближенное решение системы (1) получено при фиксированном наборе параметров θ_k , k=1,...,4, соответствующих трем типам особой точки системы (1): седло, узел, центр. Точность вычислений δ полагалась равной 0.001.

В результате вычислений для трех различных наборов экспериментальных данных получены оценки $\hat{\theta}_k$ для параметров θ_k , k=1,...,4, а также компоненты $x_1(t,\hat{\theta}), x_2(t,\hat{\theta})$ приближенных решений системы (1).

Приведем графики компонент $x_1(t,\hat{\theta}),\ x_2(t,\hat{\theta})$ приближенных решений системы (1) и соответствующие им экспериментальные данные.

Случай 1. Нулевое положение равновесия системы (1) – седло.

Получены следующие оценки параметров θ_1 , θ_2 , θ_3 , θ_4 :

$$\hat{\theta}_1 = 2.02298, \ \hat{\theta}_2 = 0.0001, \ \hat{\theta}_3 = 0.00002, \ \hat{\theta}_4 = -2.90002..$$

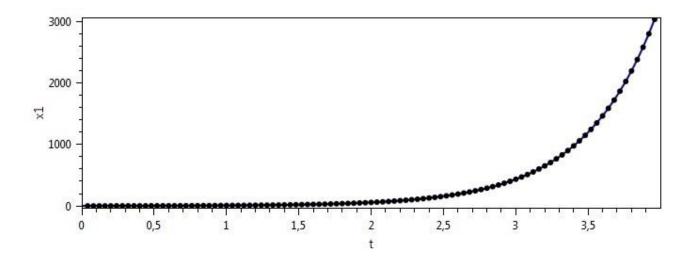


Рис. 1. Экспериментальные данные и график компоненты $x_1(t, \hat{\theta})$ приближенного решения системы (1).

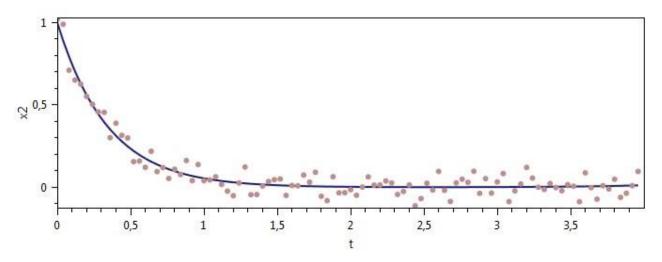


Рис. 2. Экспериментальные данные и график компоненты $x_2(t, \hat{\theta})$ приближенного решения системы (1).

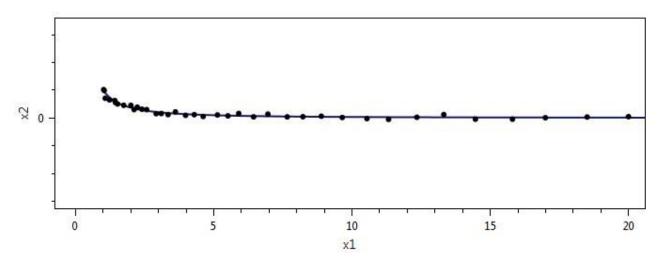


Рис. 3. Экспериментальные данные и приближение фазовой траектории системы (1) с начальными данными $x_1(0)=1,\ x_2(0)=1.$

Случай 2. Нулевое положение равновесия системы (1) – узел.

Получены следующие оценки параметров θ_1 , θ_2 , θ_3 , θ_4 :

$$\hat{\theta}_1 = -3.14132, \ \hat{\theta}_2 = 0.01895, \ \hat{\theta}_3 = 1.03559, \ \hat{\theta}_4 = 0.02129.$$

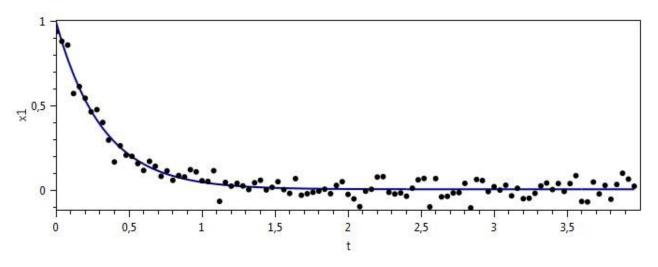


Рис. 4. Экспериментальные данные и график компоненты $x_1(t, \hat{\theta})$ приближенного решения системы (1).

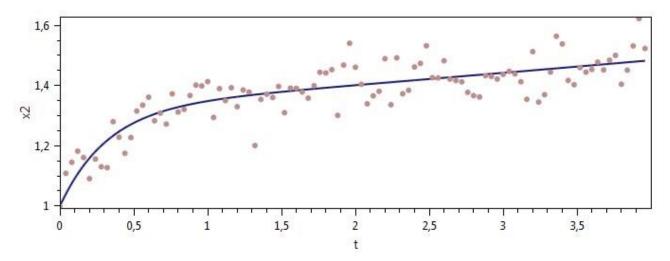


Рис. 5. Экспериментальные данные и график компоненты $x_2(t, \hat{\theta})$ приближенного решения системы (1).

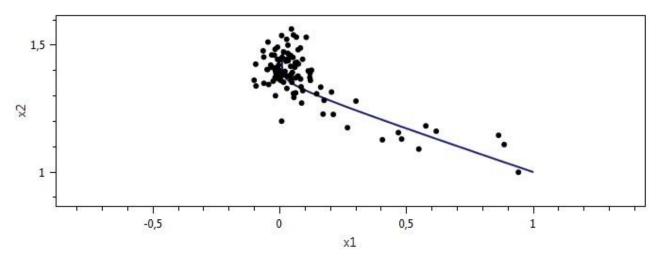


Рис. 6. Экспериментальные данные и приближение фазовой траектория системы (1) ${\rm c} \ {\rm начальными} \ {\it x}_1(0) = 1, \ {\it x}_2(0) = 1.$

Случай 3. Нулевое положение равновесия системы (1) – центр.

Получены следующие оценки параметров θ_1 , θ_2 , θ_3 , θ_4 :

$$\hat{\theta}_1 = 0.07274, \ \hat{\theta}_2 = 4.01077, \ \hat{\theta}_3 = -3.98702, \ \hat{\theta}_4 = -0.02925$$
 .

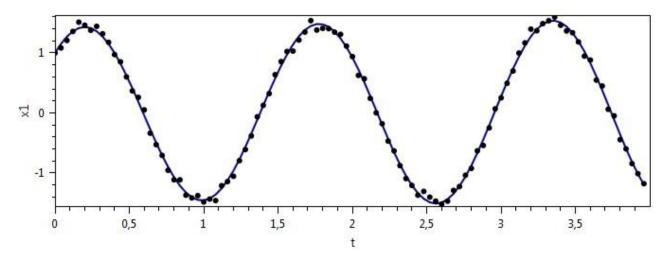


Рис. 7. Экспериментальные данные и график компоненты $x_1(t, \hat{\theta})$ приближенного решения системы (1).

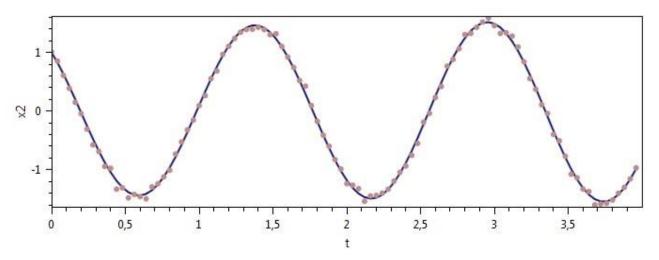


Рис. 8. Экспериментальные данные и график компоненты $x_2(t, \hat{\theta})$ приближенного решения системы (1).

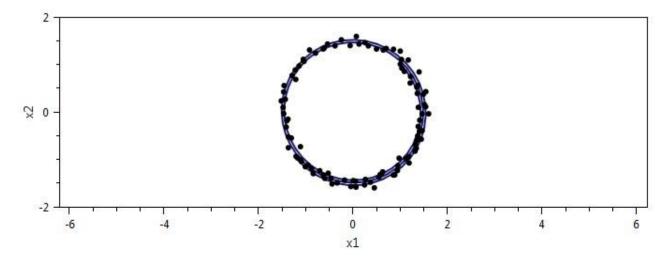


Рис. 9. Экспериментальные данные и приближение фазовой траектории системы (1).

ЛИТЕРАТУРА

- 1. Zhengfeng Li, Michael R. Osborne, Tania Prvan. Parameter estimation of ordinary differential equations // IMA Journal of Numerical Analysis. 2005. No. 25. P. 264–285.
- 2. Самарский А. А., Гулин А. В. Численные методы. М.: Наука, 1989. 432 с.
- 3. Челышов М. С., Шаманаев П. А. Решение задачи идентификации параметров динамических систем с использованием метода ортогональной циклической редукции // Прикладная математика и механика: сб. научных трудов. № 11. Ульяновск: УлГТУ, 2017. С. 264—271.
- 4. Стенин И. В., Шаманаев П. А. Алгоритм решения разреженной системы линейных алгебраических уравнений большой размерности с использованием метода сопряженных градиентов // Огарев-online. 2017. № 13 [Электронный ресурс]. Режим доступа: http://journal.mrsu.ru/arts/algoritm-resheniya-razrezhennoj-sistemy-linejnyx-algebraicheskix-uravnenij-bolshoj-razmernosti-s-ispolzovaniem-metoda-sopryazhennyx-gradientov (дата обращения 27.06.2019).
- 5. Стенин И. В., Шаманаев П. А. Идентификация параметров динамической системы второго порядка по экспериментальным данным [Электронный ресурс] // Огаревопline. 2018. № 14. Режим доступа: http://journal.mrsu.ru/arts/identifikaciya-parametrov-dinamicheskoj-sistemy-vtorogo-poryadka-po-eksperimentalnym-dannym (дата обращения 27.06.2019).