БЕСПАЛОВ Н. Н., ГОРЯЧКИН Ю. В., ПАНЬКИН К. Ю. РАЗРАБОТКА И МОДЕЛИРОВАНИЕ ГЕНЕРАТОРА ИСПЫТАТЕЛЬНЫХ ИМПУЛЬСОВ ПРЯМОГО ТОКА ДЛЯ ИССЛЕДОВАНИЯ СИЛОВЫХ ДИОДОВ

Аннотация. В статье представлены результаты моделирования схемотехнического решения генератора импульсов прямого тока для испытания полупроводниковых приборов и программа генерации управляющего напряжения полусинусоидальной формы испытательного импульса в виде 12-разрядного двоичного кода на языке VHDL. Описан алгоритм работы генератора полусинусоидальных импульсов тока.

Ключевые слова: моделирование, генератор, ПЛИС, VHDL, управляемый источник тока, прямой импульс тока, ЦАП.

BESPALOV N. N., GORYACHKIN YU. V., PANKIN K. YU. DEVELOPMENT AND SIMULATION OF FORWARD CURRENT TEST PULSE GENERATOR FOR STUDYING POWER DIODES

Abstract. The article presents the results of the simulation of a circuit design solution for a direct current pulse generator for testing semiconductor devices and a program for generating a control voltage of a half-sine waveform of a test pulse in the form of a 12-bit binary code in the VHDL language. The operation algorithm of the generator of half-sinusoidal current pulses is described.

Keywords: simulation, generator, FPGA, VHDL, controlled current source, direct current pulse, DAC.

При экспериментальном исследовании вольт-амперных характеристик (ВАХ) и тепловых характеристик (ТХ) силовых полупроводниковых приборов (СПП) в состоянии высокой проводимости (СВП) в совокупности с высокоточной измерительной аппаратурой используются различные управляемые источники тока (УИТ) [1; 2; 3; 4]. Результаты проведённых испытаний позволяют оценивать качество изготовления СПП и выявлять потенциально ненадёжные приборы [5].

Согласно ГОСТ 24461—80 [6] испытание силовых диодов (СД) и силовых тиристоров (СТ) в СВП осуществляются путём пропускания через них одиночных испытательных импульсов тока $i_{F(T)}$ (прямой ток i_F для СД и ток в открытом состоянии i_T для СТ) однополупериодной синусоидальной формы длительностью до 10 мс [2] и измерения падения импульсного прямого напряжения $u_{F(T)}$. При этом для исследования СПП в

различных электрических и тепловых режимах используются иные формы испытательных импульсов тока $i_{F(T)}$. На рисунке 1 приведены некоторые формы этих испытательных импульсов тока.

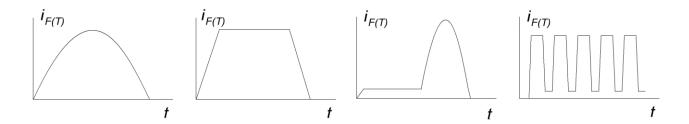


Рис. 1. Некоторые типовые формы испытательных импульсов токов $i_{F(T)}$.

Для исследования ВАХ и ТХ СПП в СВП нами разработано схемотехническое решение управляемого генератора испытательных импульсов тока (генератор), которое позволяет создавать импульсы тока различных форм. На рисунке 2 приведена разработанная структурная схема генератора испытательных импульсов тока.

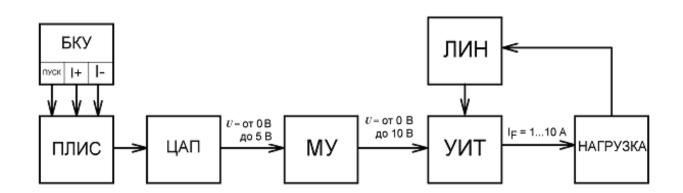


Рис. 2. Структурная схема генератора испытательных импульсов тока.

Структурная схема генератора состоит из следующих блоков.

- БКУ блок кнопок управления, где с помощью кнопки ПУСК запускается работа генератора испытательных импульсов, а с помощью кнопок +I и –I регулируется амплитуда испытательного импульса тока.
- ПЛИС программируемая логическая интегральная схема.
- ЦАП цифро-аналоговый преобразователь.
- МУ масштабирующий усилитель.
- УИТ управляемый источник тока.
- НАГРУЗКА исследуемый полупроводниковый прибор.
- ЛИН линейный источник напряжения.

Рассмотрим алгоритм работы разработанной структурной схемы генератора при формировании в НАГРУЗКЕ импульсов тока полусинусоидальной формы.

При нажатии кнопки ПУСК БКУ запускается работа программы в ПЛИС. При этом на выходах ПЛИС генерируются сигналы напряжения, соответствующие параллельному 12-ти разрядному двоичному код, которые поступают на ЦАП. На выходе ЦАП формируются импульсы напряжения в диапазоне от 0 В до 5 В полусиносоидальной формы, который через МУ формирует во времени на входе УИТ управляющие импульсы напряжения полусиносоидальной формы в диапазоне значений от 0 до 10 В. УИТ, который питается от ЛИН, формирует в нагрузке испытательные импульсы тока с заданной амплитудой. В настоящее время рассматривается формирование импульсов тока полусиносоидальной формы (см. рис. 1) с амплитудой до 10 А при изменении входного управляющего сигнала с амплитудой до 10 В.

Проверка работоспособности разработанного схемотехнического решения генератора была проведена путём моделирования основных блоков в программной среде Multisim (рисунок 3). При этом выделенный блок генератора импульсов напряжения (ГИН) эмитирует работу блоков БКУ, ПЛИС и ЦАП структурной схемы. Остальные выделенные блоки выполняют функции соответствующих блоков, представленных на структурной схеме. В качестве нагрузки был выбран диод D1 MSRF1560 рассчитанный на максимальный постоянный ток $I_F = 15$ А и пиковое повторяющееся обратное напряжение $U_{RRM} = 600$ В. С целью минимизации электрических потерь в силовой выходной цепи УИТ напряжение источника питания (ЛИН) было выбрано равным 5 В, что достаточно для формирования испытательного импульса тока с амплитудой до 10 А [7].

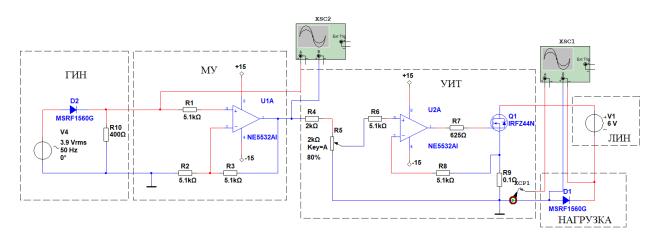


Рис. 3. Визуализация модели генератора испытательных импульсов тока в программе Multisim.

C помощью виртуальных приборов «Осциллограф» в программе Multisim были получены осциллограммы испытательных импульсов тока, пропускаемых через диод D1 и

падения напряжения на диоде D1. На рисунке 4 приведены полученные осциллограммы.

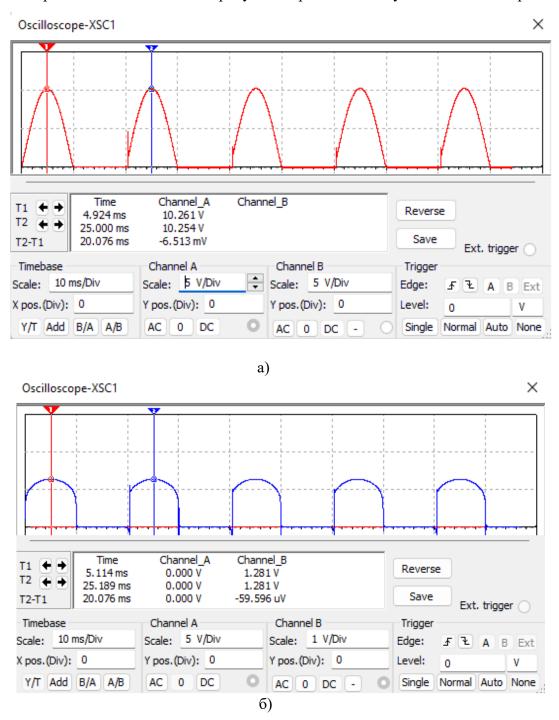


Рис. 4. Осциллограммы испытательных импульсов тока $i_{F(T)}(a)$ и импульсного падения напряжения $u_{F(T)}$ на диоде D1 (б).

На рисунке 4, а показано, что разработанная визуальная модель генератора испытательных импульсов генерирует импульсы тока амплитудой до 10~A. На рисунке 4, б показано, что при пропускании через диод D1 импульсов тока амплитудой 10~A значение падения напряжения на диоде составляет 1,28~B. На рисунке 5 приведены осциллограммы управляющих импульсов напряжения на входе MY и выходе MY.

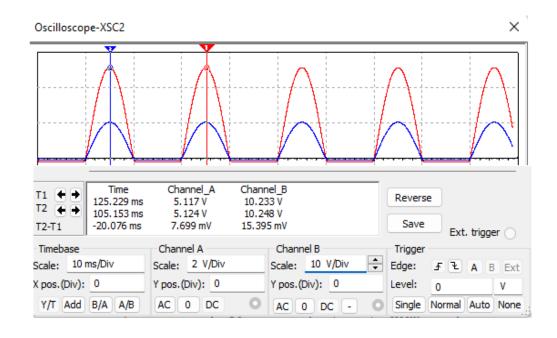


Рис. 5. Осциллограммы управляющих импульсов напряжения на входе МУ (линии красного цвета) и выходе МУ (линии синего цвета).

Для реализации приведённых на рисунках 1 и 4 испытательных импульсов тока нами была разработана программа генератора испытательных импульсов различной формы на ПЛИС [8]. В качестве генератора формы испытательного импульса была выбрана ПЛИС фирмы Altera семейства cyclone EP4CE22F17C6N. Для данной ПЛИС в программной среде Quartus на языке описания аппаратуры интегральных схем VHDL была написана программа генерации 12-ти разрядного двоичного кода. Полученная программа приведена на рисунке 6.

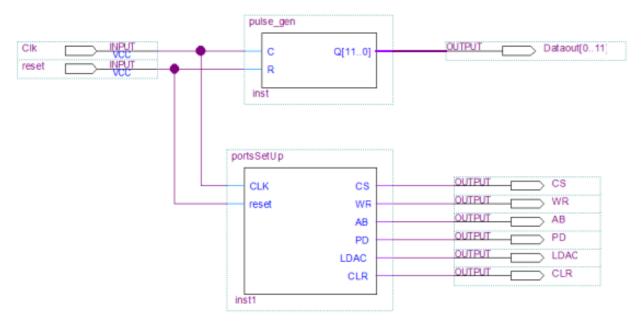


Рис. 6. Программа формирования 12-ти разрядного двоичного кода на языке VHDL.

Программа состоит из следующих блоков, написанных на языке VHD:

- pulse_gen это блок, с помощью которого генерируется параллельный 12 разрядный двоичный код;
- portsSetUp это блок управления и настройка работы ЦАП;
- порты ввода С, R;
- порты вывода Dataout[0..11], CS, WR, AB, PD, LDAC, CLR.

Программа работает по следующему алгоритму. С порта ввода clk поступают тактирующие импульсы напряжения частотой 50 МГц на входной порт С блока pulse_gen и на входной порт СLK блока portsSetUp. Внутренний делитель частоты блока pulse_gen осуществляет деление таким образом, чтобы за период времени 5 мс количество таких импульсов составляло 4 096 (12 разрядов двоичного кода). Вывод полученного кода происходит с помощью порта вывода Q[0..11].

Разработанная программа для ПЛИС была промоделирована в программе ModelSim. На рисунке 7 приведены временные диаграммы выходных сигналов ПЛИС.

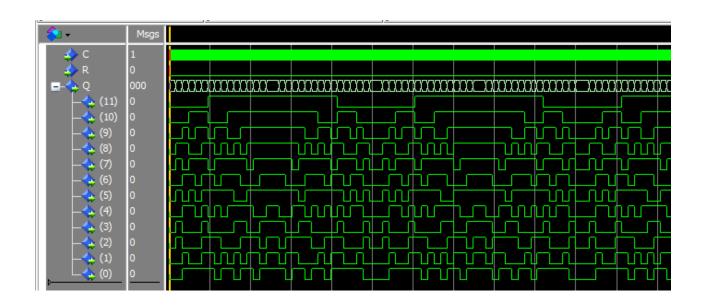


Рис. 7. Временные диаграммы работы программы блока pulse_gen.

В результате проделанной работы получены следующие результаты:

- разработана программа для формирования импульсов напряжения на языке VHDL в
 программном продукте Quartus для создания управляющих сигналов УИТ полусинусоидальной формы;
- разработано схемотехническое решение генератора испытательных импульсов прямого тока для определения параметров и характеристик СПП в СВП.

Полученные результаты моделирования в дальнейшем будут использованы при

разработке экспресс-метода и аппаратуры для определения ряда электрических и тепловых характеристик и параметров СПП в СВП.

СПИСОК ЛИТЕРАТУРЫ

- 1. Беспалов Н. Н., Горячкин Ю. В., Панькин К. Ю., Бектяшкин И. О. Определение вольт-амперной характеристики силового диода с помощью программно-определяемого функционального источника тока // XXIV Научно-практическая конференция молодых ученых, аспирантов и студентов: в 3 ч.: Технические науки. Саранск: Мордов. гос. ун-т, 2021. С. 133–137.
- 2. Беспалов Н. Н., Горячкин Ю. В., Панькин К. Ю., Бектяшкин И. О. Моделирование и исследование параметров прямых вольт-амперных характеристик и температурного коэффициента напряжения диода Д242 // Научно-технический вестник Поволжья. 2021. Вып. 5. С. 60–63.
- 3. Беспалов Н. Н., Горячкин Ю. В., Панькин К. Ю., Кондрашин Д. С. Моделирование и исследование процесса нагрева диода штыревой конструкции Д242 прямым током // Научно-технический вестник Поволжья. 2021. Вып. 5. С. 75–78.
- 4. Беспалов Н. Н., Мускатиньев А. В. Особенности измерения прямого падения напряжения на силовых тиристорах и диодах // Научно-технический вестник Поволжья. 2018. Вып. 5. С. 116–118.
- Мускатиньев А. В. Генераторы импульсного тока для подбора силовых тиристоров и диодов при параллельном включении // XXI век: итоги прошлого и проблемы настоящего плюс. Научно-методический журнал. – Пенза: Пенз. гос. технол. унт. – 2017. – № 04(38). – С. 86–91.
- 6. ГОСТ 24461-80 (СТ СЭВ 1656-79) Группа Еб9. Государственный стандарт Союза ССР.
- 7. Беспалов Н. Н., Горячкин Ю. В., Панькин К. Ю. Моделирование и исследование режимов работы источника тока для испытания полупроводниковых приборов // Научно-технический вестник Поволжья. 2022. Вып. 5. С. 24–27.
- 8. Свидетельство 2022660984. Программа генерации цифрового кода на входах цифро-аналогового преобразователя, на выходе которого формируется полусинусоидальный сигнал напряжения: программа для ЭВМ / Беспалов Н. Н., Горячкин Ю. В., Панькин К. Ю. (RU); правообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва». № 2022619708; заявл. 27.05.2022; опубл. 14.06.2022.