Evaluation of plant-based UV filters potential in modern concept view of skin photoprotection

Cover Page

Cite item

Abstract

A therapeutic plants potential is based on the pharmacological effects due to their phytochemical profile. Today, scientific interest in botanicals is increasing as a result of recent research that looks at the prospect of using these raw materials for the cosmetic industry as a means to protect the skin from the harmful effects of UV rays.

The aim of the study was to evaluate a potential of plant-based UV-filters in modern concept view of skin photoprotection.

Materials and methods. A systematic literature search was carried out using the electronic information arrays PubMed, Scopus, Google Scholar, eLibrary. The search depth was 10 years (the period from 2010 to 2021). The search was carried out by the following keywords: antioxidants, cosmetics, photoprotection, chemical composition, pharmacological action.

Results. In the paper, modern principles of skin photoprotection based on the use of chemical or physical UV-filters are considered and scientifically substantiated A trend for the use of plant-based materials and their components in the formulation of photoprotectors was notified. That is associated with a wide activity spectrum, the absence of a xenobiotic effect, and a high bioavailability of organic plant compounds.

Conclusion. The data analysis from scientific publications demonstrated a potential photoprotective activity of plant-based biologically active substances due to antioxidant, anti-inflammatory and anti-radical effects. The results of the study are a theoretical basis for a further comprehensive experimental study of plant objects in order to obtain a pool of evidence in the field of photoprotection in in vivo experiments.

About the authors

Oksana D. Nemyatykh

Saint-Petersburg State Chemical and Pharmaceutical University

Author for correspondence.
Email: oksana.nemyatyh@pharminnotech.com
ORCID iD: 0000-0001-5933-2120

Doctor of Sciences (Pharmacy), Associate Professor, Professor of Management and Economics Department of Pharmacy, Saint-Petersburg State Chemical and Pharmaceutical University

Russian Federation, 14, Prof. Popov Str., Saint-Petersburg, 197376

Inna I. Terninko

Saint-Petersburg State Chemical and Pharmaceutical University; Testing Laboratory (Medicines Quality Control Center) of Saint-Petersburg State Chemical and Pharmaceutical University

Email: inna.terninko@pharminnotech.com
ORCID iD: 0000-0002-2942-1015

Doctor of Sciences (Pharmacy), Associate Professor, Head of the Structural Subdivision, Testing Laboratory (Medicines Quality Control Center) of Saint-Petersburg State Chemical and Pharmaceutical University

Russian Federation, 14, Prof. Popov Str., Saint-Petersburg, 197376; Bld. A, 14, Prof. Popov Str., Saint-Petersburg, 197376

Askhat S. Sabitov

Asfendiyarov Kazakh National Medical University

Email: acxam78@gmail.com
ORCID iD: 0000-0001-8101-2123

teacher of the School ofPharmacy, Asfendiyarov Kazakh National Medical University, Republic of Kazakhstan

Kazakhstan, Bld. 4, 88, Tole Bi Str., Almaty, 050000

Anastasia I. Lyashko

Saint-Petersburg State Chemical and Pharmaceutical University

Email: anastasia.fitisova@pharminnotech.com
ORCID iD: 0000-0001-9534-0398

Candidate of Sciences (Pharmacy), Associate Professor of Management and Economics Department of Pharmacy, Saint-Petersburg State Chemical and Pharmaceutical University

Russian Federation, 14, Prof. Popov Str., Saint-Petersburg, 197376

Zuriyadda B. Sakipova

Asfendiyarov Kazakh National Medical University

Email: sakipova.z@kaznmu.kz
ORCID iD: 0000-0003-4477-4051

Doctor of Sciences (Pharmacy), Professor, Dean of the School of Pharmacy, Asfendiyarov Kazakh National Medical University, Republic of Kazakhstan

Kazakhstan, Bld. 4, 88, Tole Bi Str., Almaty, 050000

References

  1. Wolf P. UV-Filter. State of the Art [UV Filters. State of the art]. Hautarzt. 2009 Apr;60(4):285–93. doi: 10.1007/s00105-008-1623-y. German
  2. He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF).Biomed Pharmacother. 2021 Feb;134:111161. doi: 10.1016/j.biopha.2020.111161
  3. Westfall A, Sigurdson GT, Giusti MM. Antioxidant, UV Protection, and Antiphotoaging Properties of Anthocyanin-Pigmented Lipstick Formulations.J Cosmet Sci. 2019 Mar/Apr;70(2):63–76.
  4. Korać RR, Khambholja KM. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev. 2011 Jul;5(10):164–73.doi: 10.4103/0973-7847.91114
  5. Lohézic-Le Dévéhat F, Legouin B, Couteau C, Boustie J, Coiffard L. Lichenic extracts and metabolites as UV filters.J Photochem Photobiol B. 2013 Mar 5;120:17–28. doi: 10.1016/j.jphotobiol.2013.01.009
  6. Vostálová J, Tinková E, Biedermann D, Kosina P, Ulrichová J, Rajnochová Svobodová A. Skin Protective Activity of Silymarin and its Flavonolignans.Molecules. 2019 Mar 14;24(6):1022. doi: 10.3390/molecules24061022
  7. Álvarez-Gómez F,Korbee N, Casas-Arrojo V, Abdala- Díaz RT, Figueroa FL. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts.Molecules. 2019 Jan 18;24(2):341. doi: 10.3390/molecules24020341
  8. Ahmady A, Amini MH, Zhakfar AM, Babak G, Sediqi MN. Sun Protective Potential and Physical Stability of Herbal Sunscreen Developed from Afghan Medicinal Plants.Turk J Pharm Sci. 2020 Jun;17(3):285–92. doi: 10.4274/tjps.galenos.2019.15428
  9. Baldisserotto A, Buso P, Radice M, Dissette V, Lampronti I, Gambari R, Manfredini S, Vertuani S. Moringa oleifera Leaf Extracts as Multifunctional Ingredients for “Natural and Organic” Sunscreens and Photoprotective Preparations.Molecules. 2018 Mar 15;23(3):664. doi: 10.3390/molecules23030664
  10. Cefali LC, Ataide JA, Fernandes AR, Sanchez-Lopez E, Sousa IMO, Figueiredo MC, Ruiz ALTG, Foglio MA, Mazzola PG, Souto EB. Evaluation of In Vitro SolarProtection Factor (SPF), Antioxidant Activity, and Cell Viability of Mixed Vegetable Extracts fromDirmophandra mollisBenth,Ginkgo bilobaL.,Ruta graveolensL., andVitis viníferaL. Plants (Basel). 2019 Oct 26;8(11):453. doi: 10.3390/plants8110453
  11. Kiralan M, Yildirim G. Rosehip (Rosa caninaL.) Oil. Fruit Oils: Chemistry and Functionality. 2019: 803–14. doi: 10.1007/978-3-030-12473-1_43
  12. Fascella G, D’Angiolillo F, Mammano MM, Amenta M, Romeo FV, Rapisarda P, Ballistreri G. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora.Food Chem. 2019 Aug 15;289:56-64. doi: 10.1016/j.foodchem.2019.02.127
  13. Jiménez PP, Masson SL, Quitral RV. Chemical composition of chia seed, flaxseed and rosehip and its contribution in fatty acids omega-3. Revista Chilena De Nutricion. 2013;40(2):155–60. doi: 10.4067/S0717-75182013000200010
  14. Pashazadeh H,ÖzdemirN, Zannou O, Koca I. Antioxidant capacity, phytochemical compounds, and volatile compounds related to aromatic property of vinegar produced from black rosehip (Rosa pimpinellifoliaL.) juice. Food Bioscience. 2021;44(9):101318. doi: 10.1016/j.fbio.2021.101318
  15. Dąbrowska M, Maciejczyk E, Kalemba D. Rose hip seed oil: Methods of extraction and chemical composition. European Journal of Lipid Science and Technology. 2019;121(8):1800440. doi: 10.1002/ejlt.201800440
  16. Duru N, Karadeniz F, Erge HS. Changes in bioactive compounds, antioxidant activity and HMF formation in rosehip nectars during storage. Food and Bioprocess Technology. 2012;5(7):2899–907. doi: 10.1007/s11947-011-0657-9
  17. Kayath H, Dhawan S, Nanda S.In-vitroEstimation of Photo-Protective Potential of Rosehip Seed Oil and QbD Based Development of a Nanoformulation. Current Nanomedicine. 2019;9(3):216–31. doi: 10.2174/2468187309666190126112141
  18. Kulaitienė J, Medveckienė B, Levickienė D, Vaitkevičienė N, Makarevičienė V, Jarienė E. Changes in Fatty Acids Content in Organic Rosehip (Rosaspp.)Seeds during Ripening. Plants (Basel). 2020 Dec 17;9(12):1793. doi: 10.3390/plants9121793
  19. Bhave A, Schulzova V, Chmelarova H, Mrnka L, Hajslova J. Assessment of rosehips based on the content of their biologically active compounds.J Food Drug Anal. 2017 Jul;25(3):681–90. doi: 10.1016/j.jfda.2016.12.019
  20. Dubtsova GN, Negmatulloeva RN, Bessonov VV, Baĭkov VG, Sheviakova LV, Makhova NN, Perederiaev OI, Bogachuk MN, Baĭgarin EK. [Composition and content of biologically active substances in rose hips].Vopr Pitan. 2012;81(6):84–8. Russian
  21. Chu CC, Nyam KL. Application of seed oils and its bioactive compounds in sunscreen formulations. Journal of the American Oil Chemists’ Society. 2021;98(7):713–26. doi: 10.1002/aocs.12491
  22. Radice M,Manfredini S, Ziosi P, Dissette V, Buso P, Fallacara A, Vertuani S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters.A systematic review. Fitoterapia. 2016 Oct;114:144–62. doi: 10.1016/j.fitote.2016.09.003
  23. Olisova OY, Vladimirova EV, Babushkin AM. The skin and the sun. Russian Journal of Skin and Venereal Diseases. 2012;15(6):57–62. doi: 10.17816/dv36783. Russian
  24. Sviridova AA, Ischenko AA. Sun protective materials i. classification and interaction mechanism for organic UV-filters. ChemChemTech.2006;49(11):3–14. Russian
  25. Cavinato M, Jansen-Dürr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin.Exp Gerontol. 2017 Aug;94:78–82. doi: 10.1016/j.exger.2017.01.009
  26. Wu S, Han J, Laden F, Qureshi AA. Long-term ultraviolet flux, other potential risk factors, and skin cancer risk: a cohort study.Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1080–9. doi: 10.1158/1055-9965.EPI-13-0821
  27. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI.Arch Dermatol. 1988 Jun;124(6):869–71. doi: 10.1001/archderm.124.6.869
  28. Smanalieva J, Iskakova J, Oskonbaeva Z, Wichern F, Darr D. Investigation of nutritional characteristics and free radical scavenging activity of wild apple, pear, rosehip, and barberry from the walnut-fruit forests of Kyrgyzstan. European Food Research and Technology.2020;246(5):1095–104. doi: 10.1007/s00217-020-03476-1
  29. ÁcsováA, Hojerová J, Janotková L, Bendová H, Jedličková L, Hamranová V, Martiniaková S. The real UVB photoprotective efficacy of vegetable oils:in vitroandin vivostudies.Photochem Photobiol Sci. 2021 Jan;20(1):139–51. doi: 10.1007/s43630-020-00009-3
  30. Charles Dorni AI, Amalraj A, Gopi S, Varma K, Anjana SN. Novel cosmeceuticals from plants-аn industry guided review. Journal of Applied Research on Medicinal and Aromatic Plants. 2017;7:1–26. doi: 10.1016/j.jarmap.2017.05.003
  31. Baumann L. How to Use Oral and Topical Cosmeceuticals to Prevent and Treat Skin Aging. Facial Plast Surg Clin North Am. 2018 Nov;26(4):407–13. doi: 10.1016/j.fsc.2018.06.002
  32. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013 Feb 22;8(1):102. doi: 10.1186/1556-276X-8-102
  33. Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton B, Norton S. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. International Journal of Women’s Dermatology. 2021;7(Issue 1. – P. 45–69. doi: 10.1016/j.ijwd.2020.08.008
  34. Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B: Biology. 2019;193:51–88. doi: 10.1016/j.jphotobiol.2019.02.002
  35. Shikov AN, Narkevich IA, Akamova AV, Nemyatykh OD, Flisyuk EV, Luzhanin VG, Povydysh MN, Mikhailova IV, Pozharitskaya ON. Medical Species Used in Russia for the Management of Diabetes and Related Disorders.Front Pharmacol. 2021 Jul 20;12:697411. doi: 10.3389/fphar.2021.697411
  36. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants.Plant Physiol Biochem. 2020 Mar;148:80–9. doi: 10.1016/j.plaphy.2020.01.006
  37. Verdaguer D, Jansen MA, Llorens L, Morales LO, Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown.Plant Sci. 2017 Feb;255:72–81. doi: 10.1016/j.plantsci.2016.11.014
  38. Cefali LC, Ataide JA, Moriel P, Foglio MA, Mazzola PG.Plant-based active photoprotectants for sunscreens.Int J Cosmet Sci. 2016 Aug;38(4):346–53. doi: 10.1111/ics.12316
  39. Piovesana de Souza F, Campos GR, Packer JF. Determinação da atividade fotoprotetora e antioxidante em emulsões contendo extrato deMalpighia glabraL. Acerola J Basic Appl Pharm Sci. 2013;34(1):69-77.
  40. Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. Environ Sci Pollut Res. 2020;27(31): 38446–71. doi: 10.1007/s11356-020-10100-y
  41. Avila Acevedo JG, Castañeda CM, Benitez FJ, Durán DA, Barroso VR, Martínez CG, Muñoz LJ, Martínez CA, Romo de Vivar A. Photoprotective activity of Buddleja scordioides.Fitoterapia. 2005 Jun;76(3–4):301–9. doi: 10.1016/j.fitote.2005.03.009
  42. Velasco MVR, Balogh TS, Pedriali CA, Sarruf FD, Pinto CASO, Kaneko TM, Rolim Baby A. Association of rutin with octyl p-methoxycinnamate and benzophenone-3: in vitro evaluation of photoprotective efficacy by reflectance spectrophotometry [Associação da rutina com p-metoxicinamato de octila e benzofenona-3: avaliaçãoin vitroda eficácia fotoprotetora por espectrofotometria de refletância]. Lat Am J Pharm. 2008;27(1): 23–7. Portuguese
  43. Velasco MV, Sarruf FD, Salgado-Santos IM, Haroutiounian-Filho CA, Kaneko TM, Baby AR. Broad spectrum bioactive sunscreens. Int J Pharm. 2008 Nov 3;363(1–2):50–7. doi: 10.1016/j.ijpharm.2008.06.031
  44. Netto MPharm G, Jose J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin.J Cosmet Dermatol. 2018 Dec;17(6):1073-1083. doi: 10.1111/jocd.12470
  45. Shanuja SK, Iswarya S, Sridevi J, Gnanamani A. Exploring the UVB-protective efficacy of melanin precursor extracted from marine imperfect fungus: Featuring characterization and application studies underin vitroconditions.Int Microbiol. 2018 Jun;21(1-2):59–71. doi: 10.1007/s10123-018-0005-2
  46. Cefali LC, Franco JG, Nicolini GF, Ataide JA, Mazzola P.G. In vitroantioxidant activity and solar protection factor of blackberry and raspberry extracts in topical formulation. J Cosmet Dermatol. 2019;18(2):539-44. doi: 10.1111/jocd.12842
  47. Young AR, Narbutt J, Harrison GI, Lawrence KP, Bell M, O’Connor C, Olsen P, Grys K, Baczynska KA, Rogowski-Tylman M, Wulf HC, Lesiak A, Philipsen PA. Optimal sunscreen use, during a sun holiday with a very high ultraviolet index, allows vitamin D synthesis without sunburn.Br J Dermatol. 2019 Nov;181(5):1052–62. doi: 10.1111/bjd.17888
  48. Li SX, Li MF, Bian J, Wu XF, Peng F, Ma MG. Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. Int J Biologic Macromolecul. 2019;132:836–43. doi: 10.1016/j.ijbiomac.2019.03.177
  49. Cefali LC, Ataide JA, Fernandes AR, Sousa IMO, Gonçalves FCDS, Eberlin S, Dávila JL, Jozala AF, Chaud MV,Sanchez-Lopez E, Marto J, d’Ávila MA, Ribeiro HM, Foglio MA,Souto EB, Mazzola PG. Flavonoid-Enriched Plant-Extract- Loaded Emulsion: A Novel Phytocosmetic Sunscreen Formulation with Antioxidant Properties.Antioxidants(Basel). 2019 Oct 1;8(10):443. doi: 10.3390/antiox8100443
  50. Cho YH, Bahuguna A, Kim HH, Kim DI, Kim HJ, Yu JM, Jung HG, Jang JY, Kwak JH, Park GH, Kwon OJ, Cho YJ, An JY, Jo C, Kang SC, An BJ. Potential effect of compounds isolated fromCoffea arabicaagainst UV-B induced skin damage by protecting fibroblast cells.J Photochem Photobiol B. 2017 Sep;174:323–32. doi: 10.1016/j.jphotobiol.2017.08.015
  51. Musazzi UM, Franzè S, Minghetti P, Casiraghi A. Emulsion versus nanoemulsion: how much is the formulative shift critical for a cosmetic product?Drug Deliv Transl Res. 2018 Apr;8(2):414–21. doi: 10.1007/s13346-017-0390-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Scheme of UV rays exposure on human skin

Download (57KB)
3. Figure 2 – Propagation of a light wave inside the skin

Download (148KB)
4. Figure 3 – Transformation of thymine T and cytosine C when absorbing a UVB-wave photon

Download (53KB)
5. Figure 4 – Skin exposure to UVA rays

Download (86KB)
6. Figure 5 – Isomerization of urocaninic acid by a quantum of light under the conditions of exposure to UV rays

Download (37KB)
7. Figure 6 – Principle of calculating SPF value

Download (114KB)
8. Figure 7 – Methods for testing cellular bioprotection exposed to UV rays

Download (135KB)

Copyright (c) 2023 Nemyatykh O.D., Terninko I.I., Sabitov A.S., Lyashko A.I., Sakipova Z.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».