Influence of aluminum particle clouds in hydrogen–air mixture on the stability and structure of cellular detonation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study is aimed at identifying the main mechanisms of hybrid detonation propagation in a fuel-lean (φ=0,6) hydrogen–air mixture with aluminum particles. Numerical modeling methods are used to analyze the interaction processes of steady-state plane or cellular detonation waves with clouds of aluminum particles of finite length. When the detonation structure in the cloud is regularized, the structures remain stable (with a regular cell structure) for some time after leaving the cloud. Increase in the zone of regularity preservation with cloud density is established. Comparison of the lengths of stability zones in one- and two-dimensional formulations is carried out.

全文:

受限制的访问

作者简介

Sergei Lavruk

S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lavruk@itam.nsc.ru

(b. 1991) — Candidate of Science in physics and mathematics, junior research scientist

俄罗斯联邦, 4/1 Institutskaya Str., Novosibirsk 630090

Tatiana Khmel

S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: khmel@itam.nsc.ru

(b. 1956) — Doctor of Science in physics and mathematics, leading research scientist

俄罗斯联邦, 4/1 Institutskaya Str., Novosibirsk 630090

参考

  1. Golovastov, S. V., G. Y. Bivol, and D. Alexandrova. 2019. Evolution of detonation wave and parameters of its attenuation when passing along a porous coating. Exp. Therm. Fluid Sci. 100:124–134. doi: 10.1016/ j.expthermflusci.2018.08.030.
  2. Radulescu, M. I., and J. H. S. Lee. 2002. The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame 131(1-2):29–46. doi: 10.1016/S0010-2180(02)00390-5.
  3. Radulescu, M. I., and B. M. N. Maxwell. 2011. The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. J. Fluid Mech. 667:96–134. doi: 10.1017/S0022112010004386.
  4. Fedorov, A. V., and D. A. Tropin. 2011. Determination of the critical size of a particle cloud necessary for suppression of gas detonation. Combust. Explo. Shock Waves 47(4):464–472. doi: 10.1134/S0010508211040101.
  5. Tropin, D., and V. Temerbekov. 2022. Numerical simulation of detonation wave propagation through a rigid permeable barrier. Int. J. Hydrogen Energ. 47(87):37106–37124. doi: 10.1016/j.ijhydene.2022.08.256.
  6. Tropin, D. A., and S. A. Lavruk. 2022. Physicomathematical modeling of attenuation of homogeneous and heterogeneous detonation waves by clouds of water droplets. Combust. Explo. Shock Waves 58(3):327–336. doi: 10.1134/S001050822203008.
  7. Tropin, D., and K. Vyshegorodcev. 2023. Numerical simulation of interaction of cellular detonation wave with systems of inert porous filters. Int. J. Hydrogen Energ. 48(48):18454–18485. doi: 10.1016/j.ijhydene.2023.01. 209.
  8. Khasainov, B. A., and B. Veyssiere. 1988. Steady, plane, double-front detonations in gaseous detonable mixtures containing a suspension of aluminum particles. Dynamics of explosions. Eds. A. Borisov, A. L. Kuhl, J. R. Bowen, and J.-C. Leyer. Progress in astronautics and aeronautics ser. AIAA. 284–299. doi: 10.2514/ 5.9781600865886.0284.0299.
  9. Khasainov, B. A., and B. Veyssiere. 1996. Initiation of detonation regimes in hybrid two-phase mixtures. Shock Waves 6:9–15. doi: 10.1007/BF02511399.
  10. Veyssiere, B., and W. Ingignoli. 2003. Existence of the detonation cellular structure in two-phase hybrid mixtures. Shock Waves 12(4):291–299. doi: 10.1007/s00193-002-0168-8.
  11. Khasainov, B. A., B. Veyssiere, and W. Ingignoli. 2001. Numerical simulation of detonation cell structure in hydrogen–air mixture loaded by aluminum particles. High-speed deflagration and detonation: Fundamentals and control. Eds. G. D. Roy, S. M. Frolov, D. W. Netzer, and A. A. Borisov. Moscow: Elex-KM Publs. 163–174.
  12. Wu, W., Y. Wang, K. Wu, Z. Ma, W. Han, J. Wang, G. Wang, and M. Zhang. 2023. Experimental evaluation of aluminum powder fuel in a hydrogen/oxygen detonation tube. Int. J. Hydrogen Energ. 48(62):24089–24100. doi: 10.1016/j.ijhydene.2023.03.078.
  13. Khmel, T. A., S. A. Lavruk, and A. A. Afanasenkov. 2023. Rasprostranenie gibridnoy detonatsii v vodorod-kislorodnoy smesi s chastitsami alyuminiya v kanale s rasshireniem [Propagation of hybrid detonation in a hydrogen–oxygen mixture with aluminum particles in a channel with expansion]. Chelyabinskiy fiziko-matematicheskiy zh. [Chelyabinsk Physical and Mathematical J.] 8(3):371–386. doi: 10.47475/2500-0101-2023-8-3-371-386.
  14. Khmel, T. A., and S. A. Lavruk. 2023. Struktura i rasprostranenie voln Chepmena–Zhuge v vodorod-kislorodnoy smesi s chastitsami alyuminiya [Structure and propagation of Chapman–Jouget waves in a hydrogen–oxygen mixture with aluminum particles]. Chelyabinskiy fiziko-matematicheskiy zh. [Chelyabinsk Physical and Mathematical J.] 8(4):580–593. doi: 10.47475/2500-0101-2023-8-4-580-593.
  15. Khmel, T. A., and S. A. Lavruk. 2024. Simulation of cellular detonation flow in a hydrogen–oxygen-argon mixture with aluminum particles. Combust. Explo. Shock Waves 60(3):374–385. doi: 10.1134/S0010508224030109.
  16. Khmel, T. A., and S. A. Lavruk. 2023. Development of a model of hybrid detonation in a mixture of oxygen–hydrogen–argon with aluminum particles. Goren. Vzryv (Mosk.) — Combustion and Explosion 16(1):63–69. doi: 10.30826/CE23160107.
  17. Bedarev, I. A., K. V. Rylova, and A. V. Fedorov. 2015. Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen–air mixtures. Combust. Explo. Shock Waves 51(5):528–539. doi: 10.1134/S0010508215050032.
  18. Bedarev, I., and V. Temerbekov. 2021. Estimation of the energy of detonation initiation in a hydrogen–oxygen mixture by a high velocity projectile. Therm. Sci. 25(5B):3889–3897. doi: 10.2298/TSCI210115180B.
  19. Bedarev, I. A., and V. M. Temerbekov. 2022. Modeling of attenuation and suppression of cellular detonation in the hydrogen–air mixture by circular obstacles. Int. J. Hydrogen Energ. 47(90):38455–38467. doi: 10.1016/ j.ijhydene.2022.08.307.
  20. Fedorov, A. V. 1992. Structure of the heterogeneous detonation of aluminum particles dispersed in oxygen. Combust. Explo. Shock Waves 28(3):277–286. doi: 10.1007/BF00749644.
  21. Fedorov, A. V., and T. A. Khmel. 2005. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen. Combust. Explo. Shock Waves 41(4):435–448. doi: 10.1007/s10573-005-0054-7.
  22. Khmel, T. A. 2019. Modeling of cellular detonation in gas suspensions of submicron and nanosized aluminum particles. Combust. Explo. Shock Waves 55(5):580–588. doi: 10.1134/S0010508219050095.
  23. Strauss, W. A. 1968. Investigation of the detonation of aluminum powder–oxygen mixtures. AIAA J. 6(9):1753–1756.
  24. Lavruk, S. A., and T. A. Khmel. 2021. Regimes and critical conditions of detonation propagation in expanding channels in gas suspensions of ultrafine aluminum particles. J. Loss Prevent. Proc. 71:104476. doi: 10.1016/j.jlp. 2021.104476.
  25. Khmel, T. A., and S. A. Lavruk. 2021. Detonation flows in aluminium particle gas suspensions, inhomogeneous in concentrations. J. Loss Prevent. Proc. 72:104522. doi: 10.1016/j.jlp.2021.104522.
  26. Khmel, T. A., and S. A. Lavruk. 2022. Modeling of cellular detonation in gas suspensions of submicron aluminum particles with different distributions of concentration. Combust. Explo. Shock Waves (58):253–268. doi: 10.1134/S0010508222030017.
  27. Tropin, D. A., and S. A. Lavruk. 2023. Numerical simulation of the interaction of heterogeneous detonation with the porous insert of different geometry. Goren. Vzryv (Mosk.) — Combustion and Explosion 16(1):70–75. doi: 10.30826/CE23160108.
  28. Sundaram, D. S., V. Yang, and E. Zarko. 2015. Combustion of nano aluminum particles (review). Combust. Explo. Shock Waves 51(2):173–196. doi: 10.1134/ S0010508215020045.
  29. Starik, A. M., A. M. Savel’ev, and N. S. Titova. 2015. Specific features of ignition and combustion of composite fuels containing aluminum nanoparticles (review). Combust. Explo. Shock Waves 51(2):197–222. doi: 10.1134/ S0010508215020057.
  30. Afanasenkov, A. A., and T. A. Khmel. 2024. Validatsiya modeli gibridnoy detonatsii vodorod-vozdushnykh smesey s chastitsami alyuminiya [Validation of the model of hybrid detonation of hydrogen–air mixtures with aluminium particles]. Chelyabinskiy fiziko-matematicheskiy zh. [Chelyabinsk Physical and Mathematical J.] 4(9):177–186. doi: 10.47475/2500-0101-2024-9-2-177-186.
  31. Ciccarelli, G., T. Ginsberg, J. Boccio, C. Economos, K. Sato, and M. Kinoshita. 1994. Detonation cell size measurements and predictions in hydrogen–air–steam mixtures at elevated temperatures. Combust. Flame 99(2):212–220. doi: 10.1016/0010-2180(94)90124-4.
  32. Ciccarelli, G., T. Ginsburg, J. Boccio, C. Economos, C. Finfrock, L. Gerlach, K. Sato, and M. Kinoshita. 1994. High-temperature hydrogen–air–steam detonation experiments in the BNL small-scale development apparatus. Upton, NY: Brookhaven National Lab. 104 p.
  33. Hosoda, H., A. K. Hayashi, and E. Yamada. 2013. Numerical analysis on combustion characteristics of nano aluiminum particle-oxygen two-phase detonation. Sci. Technol. Energ. Ma. 74(1-2):34–40.
  34. Boiko, V. M., V. P. Kiselev, S. P. Kiselev, A. N. Papyrin, S. V. Poplavskii, and V. M. Fomin. 1996. Interaction of a shock wave with a cloud of particles. Combust. Explo. Shock Waves 2(32):191–203.
  35. Harten, A. 1983. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135(3):357–393. doi: 10.1016/0021-9991(83)90136-5.
  36. Roache, P. J. 1976. Computational fluid dynamics. Albuquerque: Hermosa Publs. 446 p.
  37. Khmel, T. A., and S. A. Lavruk. 2024. The effect of adding nanodispersed aluminum particles on characteristics of detonation of hydrogen–air mixtures. Techn. Phys. Lett. 50(4):76–78.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Pressure profiles in a detonation wave propagating in a cloud of reacting particles with d2=1 (a) and 3.5 m (b): left column — density of the cloud ρ2=30 g/m3; and right column — ρ2=90 g/m3

下载 (613KB)
3. Fig. 2. Maximum pressure fields in the course of detonation wave propagation in a cloud of particles with d2=3,5 m, density of the cloud ρ2=90 g/m3

下载 (481KB)
4. Fig. 3. Maximum pressure fields in the detonation wave behind the cloud of particles with d2=3,5 m: (a) density of the cloud ρ2=30 g/m3; (b) 50; and (c) ρ2=90 g/m3

下载 (356KB)
5. Fig. 4. Maximum pressure fields in the detonation wave behind the cloud of particles of d2=1 m: (a) density of the cloud ρ2=30 g/m3; (b) 50; and (c) ρ2=90 g/m3

下载 (357KB)
6. Fig. 5. The length of the zone with a regular cellular structure vs. the density of the cloud of reacting particles: 1 — 1 m; 2 — 3,5 m; filled signs — two-dimensional calculations; and empty signs — one-dimensional calculations

下载 (126KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».