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Аннотация. Квант магнитного потока, обусловленный элементарным электрическим током, вызванным 

движением единственного электрона, является расчетной величиной. Его определил Ф. Лондон на 

основе предположения, что отдельный электрон может развивать квант кинетического момента ћ. 

Позднее Л. Купер ввел представление о двухчастичных квантовых системах электронов в проводниках, 

корреляции между которыми происходят в результате обмена акустическими квантами (фононами). Эти 

системы получили известность как куперовские пары. Предположение о том, что куперовская пара 

может развивать не два, а один квант кинетического момента ћ приводит к сокращению расчетной 

величины кванта магнитного потока в два раза. Дальнейшие измерения, выполненные Б.С. Дивером, 

У.М. Фэрбэнком, Р. Доллом и М. Небауэром, показали, что минимальный магнитный поток меньше 

кванта Ф Лондона в два раза. Это послужило основанием для установления этого значения в качестве 

официальной величины кванта магнитного потока. Цель исследования заключается в переосмыслении 

указанных обстоятельств и, в частности, определении спинового магнитного потока электрона. Формула 

классического радиуса электрона не подходит ни для шара, ни для сферы. Поскольку она точно не 

определена, это дает свободу для допущений при описании спина электрона, в том числе, в виде 

обращающейся по окружности материальной точки, масса которой равна массе электрона. Это 

допущение, подкрепленное последующим строгим доказательством, с ним не связанным, позволяет 

установить, что существуют две величины для кванта магнитного потока: спиновый и орбитальный 

квант (квант Ф. Лондона).  
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Abstract The quantum of the magnetic flux caused by an elementary electric current caused by the motion of a single 

electron is a calculated value. He was identified by F. London based on the assumption that a single electron can 

develop a quantum of kinetic momentum. Later, L. Cooper introduced the idea of two-particle quantum systems 

of electrons in conductors, correlations between which occur as a result of the exchange of acoustic quanta 

(phonons). These systems became known as Cooper pairs. The assumption that a Cuper pair can develop not 

two, but one quantum of kinetic momentum, leads to a reduction in the calculated magnitude of the magnetic 

flux quantum by half. Further measurements performed by B.S. Deaver, W.M. Fairbank, R. Doll, and M. 

Nebauer showed that the minimum magnetic flux is two times less than the quantum of light. This served as the 

basis for establishing this value as the official value of the magnetic flux quantum. The purpose of the study is to 
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rethink these circumstances and, in particular, to determine the spin magnetic flux of an electron. The formula of 

the classical electron radius is not suitable for either a ball or a sphere. Since it is not precisely defined, this gives 

freedom for assumptions when describing the spin of an electron, including in the form of a material point 

rotating around a circle, the mass of which is equal to the mass of the electron. This assumption, supported by 

subsequent rigorous proof unrelated to it, allows us to establish that there are two quantities for the magnetic flux 

quantum, namely, the spin quantum and the orbital quantum (quantum F. London). 

Keywords: electron, Cooper pair, quantum of kinetic moment, quantum of magnetic flux, quantum of F. London, spin, 

superposition, quasiquantum 
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Введение 

В 1948 г. Ф. Лондон вычислил квант магнит-

ного потока от электрического тока, созданного 

одним электроном [1; 2]. Ключевым условием 

вычисления стало приписывание электрону 

кванта кинетического момента ћ. 

В 1956 г. Л. Купер описал двухчастичные   

системы коррелированных электронов [3 – 5]. 

Это так называемые куперовские пары [6 – 9]. 

Они возникают в проводниках вследствие   

электрон-фононного взаимодействия [10 – 12]. 

Приписывание двухчастичной системе кванта 

кинетического момента ћ [13 – 15] приводит к 

уменьшению вычисляемого значения кванта 

магнитного потока вдвое.  

Ни Ф. Лондон, ни Л. Купер не учитывали в 

своих расчетах магнитные потоки, вызванные 

спинами электронов [16 – 18]. 

В 1961 г. Б.С. Дивер и У.М. Фэрбэнк и неза-

висимо Р. Долл и М. Небауэр измерили квант 

магнитного потока [19; 20]. Результат оказался 

вдвое меньше кванта Ф. Лондона. 

С тех пор считается, что квант магнитного пото-

ка создается исключительно куперовскими парами, 

он вдвое меньше кванта Ф. Лондона [21 ‒ 23]. 

Целью настоящей работы является определе-

ние спинового магнитного потока электрона. 

Актуальность настоящей работы определяет-

ся тем, что спиновый магнитный поток электро-

на, являющийся основой собственного магнит-

ного поля ферромагнетиков, до сих пор не уста-

новлен. Проблема заключается в том, что обще-

принятое представление о спине электрона   [24 

‒ 26] не позволяет его рассчитать. Поэтому воз-

никает необходимость принятия дополнитель-

ных временных (рабочих) предположений. 

 

Материалы и методы 

Геометрическая форма электрона неизвестна. 

Однако считается, что это не шар и не сфера. Это 

следует из формулы его классического радиуса 
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здесь μ0 – постоянная магнитная; е – заряд элек-

трона; me – масса электрона.   

Если бы электрон имел форму шара, формула 

радиуса имела бы следующий вид:  

 
2

03

5 4
e

e

e
r

m






. 

 

Если бы электрон имел форму сферы, фор-

мула была бы следующей:  
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Полная неопределенность формы электрона 

позволяет непротиворечиво представить его 

спин в виде момента импульса, образованного 

материальной точкой с массой электрона, обра-

щающейся по окружности неопределенного ра-

диуса (сколь угодно малого, причем его величи-

на значения не имеет). Этот подход может иметь 

недостатки, но он имеет и существенное досто-

инство в виде возможности использовать гото-

вую формулу для магнитного потока, созданно-

го «током» одного электрона [27]: 

 

2

I
E


 ; 

e
I

T
 ; 

2 R
T

v


 ; 

2

2

em v
E  ; 

2 eRm v

e


  ; 

       

2 Rp

e


  ,               (1) 



Вестник Сибирского государственного индустриального университета № 4 (54), 2025 

 - 11 - 

где E ‒ энергия; I ‒ ток электронов; T ‒ период 

вращения электронов; R ‒ радиус лабораторной 

трубки (в экспериментах Б.С. Дивера, У.М. 

Фэрбэнка, Р. Долла и М. Небауэра); v ‒ линей-

ная скорость отдельного электрона [28 ‒ 31]; p ‒ 

импульс отдельного электрона [32 ‒ 34]. 

 

Предварительная нестрогая оценка спи-

нового магнитного потока электрона 

Спин электрона [35 – 38] определяется по 

следующему уравнению: 
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С учетом формулы (1) квант магнитного по-

тока, обусловленного спином электрона, равен 
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Следовательно 
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Классический радиус (re) не используется в 

расчетах настоящей работы и, следовательно, не 

влияет на результаты. Он упомянут исключи-

тельно для иллюстрации неопределенности 

формы электрона. В формуле (1) нет необходи-

мости выбирать параметр R. Радиус не входит в 

результирующее уравнение (3) для спинового 

кванта магнитного потока («растворяется» в 

спине). Поэтому его величина не имеет значе-

ния. Можно предположить, что он достаточно 

велик, чтобы предотвратить возникновение из-

быточной энергии. 

 

Экспериментальная верификация спино-

вого кванта магнитного потока 

Круговой ток в лабораторной трубке, образо-

ванный одним электроном, создает магнитный 

поток (формула Ф. Лондона): 
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Спин электрона может иметь лишь две проек-

ции на направление магнитного поля потока (4): 
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В силу закона сохранения момента импульса 

спин противоположен орбитальному моменту: 

  

2
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Следовательно, магнитный поток, обуслов-

ленный спином электрона, вычитается из потока 

(4) (его проекция). 

В 1961 г. Б.С. Дивер, У.М. Фэрбэнк, Р. Долл 

и М. Небауэр измерили орбитальный квант маг-

нитного потока одного электрона за вычетом 

проекции спинового кванта магнитного потока 

(через торцевые поверхности своих лаборатор-

ных трубок): 
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Получили квазиквант, а не квант от купе-

ровской пары: 
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Совпадение измеренного значения в уравне-

нии (5) с выражением (6) является совершенно 

случайным. Однако это является надежным экс-

периментальным подтверждением формул (1), (3) 

– (5) и принятого допущения о спине электрона. 

 

Строгий вывод формулы для спинового 

магнитного потока электрона 

Как квант магнитного потока Ф. Лондона (4), 

так и квант от куперовской пары (6) можно 

представить в следующем виде: 
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где q ‒ заряд; Lq ‒ квант кинетического момента. 

Подстановка заряда электрона и его кинети-

ческого момента (спина) (2) в формулу (7) непо-
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Полученное выражение совпадает с уравне-

нием (3), что также является надежной верифи-

кацией формул (1), (3) – (5) и принятого допу-

щения о спине электрона. 

В работах [27; 39; 40] подробно показано, что 

приписывание куперовской паре электронов 

кванта ћ кинетического момента является не-

приемлемым. Поэтому в такой же степени не-

приемлемой является связанная с этим формула 

для кванта магнитного потока от куперовской 

пары. 

 

Выводы  

Установлено, что в действительности су-

ществуют квант Ф. Лондона, квант магнитного 

потока, обусловленный спином электрона, а 

также их суперпозиция (квазиквант).  

В силу аддитивности магнитного потока ми-

нимально возможный магнитный поток, который 

может создавать куперовская пара электронов, в 

два раза больше кванта Ф. Лондона. А не в два 

раза меньше, как было принято считать ранее. 

Квант момента импульса ћ, применяемый для 

многочастичной квантовой системы, должен 

делиться между частицами системы. Поэтому 

каждая частица будет обладать моментом им-

пульса меньше кванта, что неприемлемо. Таким 

образом, наделение куперовской пары электро-

нов квантом момента импульса ћ является не-

правомерным. 

Практическое значение полученных резуль-

татов заключается в том, что установлен спино-

вый квант магнитного потока, а именно спины 

формируют основную часть собственного маг-

нитного поля ферромагнетиков, которые повсе-

местно используются в магнитных системах 

электротехнических и энергетических систем. 

Представление о спиновом кванте магнитно-

го потока может использоваться при разработке 

квантовых компьютеров. 
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