Issues in the design of tissue-engineered collagen constructs and some approaches to their solution: A review

封面

如何引用文章

全文:

详细

   This review article analyzes modern literature sources on the design of bioinks and tissue-engineered constructs on the basis of soluble forms of collagen, including gelatin.   The choice of soluble forms of collagen as a biopolymer basis for bioinks and this type of constructs is determined by their unique biocompatibility, bioresorbability, as well as the presence of adhesive sites (motifs) for binding cells with their subsequent proliferation and organ or tissue maturation. However, the poor mechanical properties of products derived from soluble collagens, rapid biodegradation, tendency to lose the solubility of highly viscous solutions when stored or with pH increase limit their application in tissue engineering. The use of more stable low-viscosity collagen solutions does not enable the creation of dimensionally stable tissue-engineered constructs. It is shown that the introduction of various water-soluble biocompatible polymeric additives into hydrogels on the basis of soluble collagens allows the above-mentioned problems to be solved, as well as providing a means to customize the required characteristics of bioinks and tissue-engineered constructs. The additives that improve their characteristics include biopolymers: silk sericin and fibroin, as well as alginates and fibrinogen, which can form cross-links in the presence of Ca2+. This type of crosslinking is shown to further improve the performance of these constructs. All of these biopolymers are commercially available. The article comparatively analyzes approaches to stabilizing the shape, improving the mechanical properties, and adjusting the bioresorption time of 3D printed tissue-engineered constructs during organ or tissue maturation.

作者简介

I. Farion

Baikal Institute of Nature Management SB RAS

Email: fariv@mail.ru

V. Burdukovskii

Baikal Institute of Nature Management SB RAS

Email: burdvit@mail.ru

参考

  1. Amirrah I.N., Lokanathan Y., Zulkiflee I., Wee M.F.M.R., Motta A., Fauzi M.B. A comprehensive review on collagen type I development of biomaterials for tissue engineering: from biosynthesis to bioscaffold // Biomedicines. 2022. Vol. 10. P. 2307. doi: 10.3390/biomedicines10092307.
  2. Campos L.D., de Almeida Santos Junior V., Pimentel J.D., Carregã G.L.F., Cazarin C.B.B. Collagen supplementation in skin and orthopedic diseases : a review of the literature // Heliyon. 2023. Vol. 9, no. 4. P. e14961. doi: 10.1016/j.heliyon.2023.e14961.
  3. Hudson D.M., Archer M., Rai J., Weis M., Fernandes R.J., Eyre D.R. Age-related type I collagen modifications reveal tissue-defining differences between ligament and tendon // Matrix Biology Plus. 2021. Vol. 12. P. 100070. doi: 10.1016/j.mbplus.2021.100070.
  4. Nolte S.V., Xu W., Rennekampff H.-O., Rodemann H.P. Diversity of fibroblasts – a review on implications for skin tissue engineering // Cells Tissues Organs. 2008. Vol. 187, no. 3. P. 165–176. doi: 10.1159/000111805.
  5. Trębacz H., Barzycka A. Mechanical properties and functions of elastin : an Overview // Biomolecules. 2023. Vol. 13, no. 3. P. 574. doi: 10.3390/biom13030574.
  6. Holzapfel G.A. Collagen in arterial walls: biomechanical aspects // Collagen. Structure and mechanics / ed. P. Fratzl. New York: Springer, 2008. P. 285–324. doi: 10.1007/978-0-387-73906-9_11.
  7. Song Y., Overmass M., Fan J., Hodge C., Sutton G., Lovicu F.J., You J. Application of collagen I and IV in bioengineering transparent ocular tissues // Frontiers of Surgey. 2021. Vol. 8. P. 639500. doi: 10.3389/fsurg.2021.639500.
  8. Balters L., Reichl S. 3D bioprinting of corneal models : a review of the current state and future outlook // Journal of Tissue Engineering. 2023. Vol. 14. doi: 10.1177/20417314231197793.
  9. Kelly D.J., Crawford A., Dickinson S.C., Sims T.J., Mundy J., Hollander A.P., et al. Biochemical markers of the mechanical quality of engineered hyaline cartilage // Journal of Materials Science: Materials in Medicine. 2007. Vol. 18. P. 273–281. doi: 10.1007/s10856-006-0689-2.
  10. Ouyang Z., Dong L., Yao F., Wang K., Chen Y., Li S., et al. Cartilage-related collagens in osteoarthritis and rheumatoid arthritis: from pathogenesis to therapeutics // International Journal of Molecular Sciences. 2023. Vol. 24, no. 12. P. 9841. doi: 10.3390/ijms24129841.
  11. Zheng M., Wang X., Chen Y., Yue O., Bai Z., Cui B., et al. A review of recent progress on collagen-based biomaterials // Advanced Healthcare Materials. 2023. Vol. 12, no. 16. P. 2202042. doi: 10.1002/adhm.202202042.
  12. Gulevsky A.K., Shcheniavsky I.I. Collagen: structure, metabolism, production and industrial application // Biotechnologia Acta. 2020. Vol. 13, no. 5. P. 42–61. doi: 10.15407/biotech13.05.042.
  13. Gao L., Orth P., Cucchiarini M., Madry H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells // Expert Review of Medical Devices. 2017. Vol. 14, no. 9. P. 717–732. doi: 10.1080/17434440.2017.1368386.
  14. Roberts S., Menage J., Sandell L.J., Evans E.H., Richardson J.B. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation // The Knee. 2009. Vol. 16, no. 5. P. 398–404. doi: 10.1016/j.knee.2009.02.004.
  15. Wu J.-J., Weis M.A., Kim L.S., Eyre D.R. Type III collagen, a fibril network modifier in articular cartilage // The Journal of Biological Chemistry. 2010. Vol. 285, no. 24. P. 18537–18544. doi: 10.1074/jbc.M110.112904.
  16. LeBar K., Wang Z. Extracellular matrix in cardiac tissue mechanics and physiology: role of collagen accumulation // Extracellular matrix – developments and therapeutics / eds R. Sashank Madhurapantula, P.R.O.J. Orgel, Z. Loewy. IntechOpen, 2021. doi: 10.5772/intechopen.96585.
  17. Tan J., Zhang Q.-Y., Huang L.-P., Huang K., Xie H.-Q. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification // Biomaterials Science. 2021. Vol. 9. P. 4803–4820. doi: 10.1039/d1bm00470k.
  18. Hu Y., Liu L., Dan W., Dan N., Gu Z., Yu X. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix // International Journal of Biological Macromolecules. 2013. Vol. 55. P. 221–230. doi: 10.1016/j.ijbiomac.2013.01.009.
  19. Blidi O.E., Omari N.E., Balahbib A., Ghchime R., El Menyiy N., Ibrahimi A., et al. Extraction methods, characterization and biomedical applications of collagen: a review // Biointerface Research in Applied Chemistry. 2021. Vol. 11, no. 5. P. 13587–13613. doi: 10.33263/BRIAC115.1358713613.
  20. Oslan S.N.H., Li C.X., Shapawi R., Mokhtar R.A.M., Noordin W.N.M., Huda N. Extraction and characterization of bioactive fish by-product collagen as promising for potential wound healing agent in pharmaceutical applications: current trend and future perspective // International Journal of Food Science. 2022. P. 9437878. doi: 10.1155/2022/9437878.
  21. Alipal J., Mohd Pu’ad N.A.S., Lee T.C., Nayan N.H.M., Sahari N., Basri H., et al. A review of gelatin: properties, sources, process, applications, and commercialization // Materials Today: Proceedings. 2021. Vol. 42, no. 1. P. 240–250. doi: 10.1016/j.matpr.2020.12.922.
  22. Якубова О.С., Бекешева А.А. Научное обоснование физических свойств рыбного желатина // Вестник Астраханского государственного технического университета. Серия: Рыбное хозяйство. 2018. N 3. С. 132–140. doi: 10.24143/2073-5529-2017-3-132-140. EDN: XYZDKH.
  23. Pang Z., Deeth H., Sharma R., Bansal N. Effect of addition of gelatin on the rheological and microstructural properties of acid milk protein gels // Food Hydrocolloids. 2015. Vol. 43. P. 340–351. doi: 10.1016/j.foodhyd.2014.06.005.
  24. Pang Z., Luo Y., Ma P., Chen C., Liu X. Fundamental understanding of the role of gelatin in stabilizing milk protein systems during acidification // LWT. 2022. Vol. 172. P. 114187. doi: 10.1016/j.lwt.2022.114187.
  25. Nagel T., Kelly D.J. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture // Tissue Engineering. Part A. 2013. Vol. 19, no. 7-8. P. 824–833. doi: 10.1089/ten.tea.2012.0363.
  26. Yannas I.V., Tzeranis D.S., Harley B.A., So P.T.С. Biologically active collagen-based scaffolds: advances in processing and characterization // Philosophical Transactions of the Royal Society A. 2010. Vol. 368. P. 2123–2139. doi: 10.1098/rsta.2010.0015.
  27. Drzewiecki K.E., Malavade J.N., Ahmed I., Lowe C.J., Shreiber D.I. A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine // Technology. 2017. Vol. 5, no. 4. P. 185–195. doi: 10.1142/S2339547817500091.
  28. Li Z., Ruan C., Niu X. Collagen-based bioinks for regenerative medicine: fabrication, application and prospective // Medicine in Novel Technology and Devices. 2023. Vol. 17. P. 100211. doi: 10.1016/j.medntd.2023.100211.
  29. Marques C.F., Diogo G.S., Pina S., Oliveira J.M., Silva T.H., Reis R.L. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review // Journal of Materials Science. Materials in Medicine. 2019. Vol. 30. P. 32. doi: 10.1007/s10856-019-6234-x.
  30. No D.Y., Lee K.-H., Lee J., Lee S.-H. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip // Lab on a Chip. 2015. Vol. 15. P. 3822–3837. doi: 10.1039/c5lc00611b.
  31. Ren X., Wang F., Chen C., Gong X., Yin L., Yang L. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient // BMC Musculoskeletal Disorders. 2016. Vol. 17. P. 301. doi: 10.1186/s12891-016-1130-8.
  32. McCoy M.G., Seo B.R., Choi S., Fischbach C. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation // Acta Biomaterialia. 2016. Vol. 44. P. 200–208. doi: 10.1016/j.actbio.2016.08.028.
  33. Mauney J.R., Nguyen T., Gillen K., Kirker-Head C., Gimble J.M., Kaplan D.L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds // Biomaterials. 2007. Vol. 28, no. 35. P. 5280–5290. doi: 10.1016/j.biomaterials.2007.08.017.
  34. Skardal A., Atala A. Biomaterials for integration with 3-D bioprinting // Annals of Biomedical Engineering. 2015. Vol. 43, no. 3. P. 730–746. doi: 10.1007/s10439-014-1207-1.
  35. Shingleton W.D., Cawston T.E., Hodges D.J., Brick P. Collagenase: a key enzyme in collagen turnover // Biochemistry and Cell Biology. 1996. Vol. 74, no. 6. P. 759–775. doi: 10.1139/o96-083.
  36. Diamantides N., Wang L., Pruiksma T., Siemiatkoski J., Dugopolski C., Shortkroff S., et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH // Biofabrication. 2017. Vol. 9, no. 3. P. 034102. doi: 10.1088/1758-5090/aa780f.
  37. Murphy S.V., Skardal A., Atala A. Evaluation of hydrogels for bio-printing applications // Journal of Biomedical Materials Research. Part A. 2013. Vol. 101A. P. 272–284. doi: 10.1002/jbm.a.34326.
  38. Helary C., Bataille I., Abed A., Illoul C., Anglo A., Louedec L., et al. Concentrated collagen hydrogels as dermal substitutes // Biomaterials. 2010. Vol. 31, no. 3. P. 481–490. doi: 10.1016/j.biomaterials.2009.09.073.
  39. Yang X., Lu Z., Wu H., Li W., Zheng L., Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering // Materials Science & Engineering: C. 2018. Vol. 83. P. 195–201. doi: 10.1016/j.msec.2017.09.002.
  40. Kreimendahl F., Köpf M., Thiebes A.L., Duarte Campos D.F., Blaeser A., Schmitz-Rode T., et al. Three-dimensional printing and angiogenesis: tailored agarose-type I collagen blends comprise three-dimensional printability and angiogenesis potential for tissue-engineered substitutes // Tissue Engineering. Part C: Methods. 2017. Vol. 23, no. 10. P. 604–615. doi: 10.1089/ten.TEC.2017.0234.
  41. Blaeser A., Heilshorn S.C., Duarte Campos D.F. Smart bioinks as de novo building blocks to bioengineer living tissues // Gels. 2019. Vol. 5, no. 2. P. 29. doi: 10.3390/gels5020029.
  42. Montero F.E., Rezende R.A., da Silva J.V.L., Sabino M.A. Development of a smart bioink for bioprinting applications // Frontiers in Mechanical Engineering. 2019. Vol. 5. P. 56. doi: 10.3389/fmech.2019.00056.
  43. Chang C.C., Boland E.D., Williams S.K., Hoying J.B. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies // Journal of Biomedical Materials Research. Part B. Applied Biomaterials. 2011. Vol. 98B, no. 1. P. 160–170. doi: 10.1002/jbm.b.31831.
  44. Martelli A., Bellucci D., Cannillo V. Additive manufacturing of polymer/bioactive glass scaffolds for regenerative medicine : a review // Polymers. 2023. Vol. 15, no. 11. P. 2473. doi: 10.3390/polym15112473.
  45. Rodriguez-Rivera G.J., Green M., Shah V., Leyendecker K., Cosgriff-Hernandez E. A user’s guide to degradation testing of polyethylene glycol-based hydrogels: From in vitro to in vivo studies // Journal of Biomedical Materials Research. Part A. 2023. P. 1–13. doi: 10.1002/jbm.a.37609.
  46. Cui Z., Lee B.H., Pauken C., Vernon B.L. Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels // Journal of Biomedical Materials Research. Part A. 2011. Vol. 98A, no. 2. P. 159–166. doi: 10.1002/jbm.a.33093.
  47. Diniz I.M.A, Chen C., Xu X., Ansari S., Zadeh H.H., Marques M.M., et al. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells // Journal of Materials Science: Materials in Medicine. 2015. Vol. 26. P. 153. doi: 10.1007/s10856-015-5493-4.
  48. Cheng L., Yao B., Hu T., Cui X., Shu X., Tang S., et al. Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation // International Journal of Biological Macromolecules. 2019. Vol. 135. P. 1107–1113. doi: 10.1016/j.ijbiomac.2019.06.017.
  49. Liu C., Lewin Mejia D., Chiang B., Luker K.E., Luker G.D. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion // Acta Biomaterialia. 2018. Vol. 75. P. 213–225. doi: 10.1016/j.actbio.2018.06.003.
  50. Zhang X., Zhai C., Fei H., Liu Y., Wang Z., Luo C., et al. Composite silk-extracellular matrix scaffolds for enhanced chondrogenesis of mesenchymal stem cells // Tissue Engineering. Part C: Methods. 2018. Vol. 24, no. 11. P. 645–658. doi: 10.1089/ten.TEC.2018.0199.
  51. Steiner D., Lang G., Fischer L., Winkler S., Fey T., Greil P., et al. Intrinsic vascularization of recombinant eADF4(C16) spider silk matrices in the arteriovenous loop model // Tissue Engineering. Part A. 2019. Vol. 25, no. 21-22. P. 1504–1513. doi: 10.1089/ten.TEA.2018.0360.
  52. Sanz-Horta R., Matesanz A., Gallardo A., Reinecke H., Jorcano J.L., Acedo P., et al. Technological advances in fibrin for tissue engineering // Journal of Tissue Engineering. 2023. Vol. 14. doi: 10.1177/20417314231190288.
  53. Duarte Campos D.F., Zhang S., Kreimendahl F., Köpf M., Fischer H., Vogt M., et al. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration // Connective Tissue Research. 2019. Vol. 61, no. 2. P. 205–215. doi: 10.1080/03008207.2019.1640217.
  54. Affas S., Schäfer F.M., Algarrahi K., Cristofaro V., Sullivan M.P., Yang X., et al. Augmentation cystoplasty of diseased porcine bladders with bi-layer silk fibroin grafts // Tissue Engineering. Part A. 2019. Vol. 25, no. 11-12. P. 855–866. doi: 10.1089/ten.TEA.2018.0113.
  55. Saad M., El-Samad L.M., Gomaa R.A., Augustyniak M., Hassan M.A. A comprehensive review of recent advances in silk sericin: extraction approaches, structure, biochemical characterization, and biomedical applications // International Journal of Biological Macromolecules. 2023. Vol. 250. P. 126067. doi: 10.1016/j.ijbiomac.2023.126067.
  56. Cai H., Wu B., Li Y., Liu Y., Shi L., Gong L., et al. Local delivery of silk-cellulose incorporated with stromal cell-derived factor-1α functionally improves the uterus repair // Tissue Engineering. Part A. 2019. Vol. 25, no. 21-22. P. 1514–1526. doi: 10.1089/ten.TEA.2018.0283.
  57. Sapru S., Das S., Mandal M., Ghosh A.K., Kundu S.C. Nonmulberry silk protein sericin blend hydrogels for skin tissue regeneration – in vitro and in vivo // International Journal of Biological Macromolecules. 2019. Vol. 137. P. 545–553. doi: 10.1016/j.ijbiomac.2019.06.121.
  58. Arango M.C., Montoya Y., Peresin M.S., Bustamante J., Álvarez-López C. Silk sericin as a biomaterial for tissue engineering : a review // International Journal of Polymeric Materials and Polymeric Biomaterials. 2020. Vol. 70, no. 16. P. 1115–1129. doi: 10.1080/00914037.2020.1785454.
  59. Urech L., Bittermann A.G., Hubbell J.A., Hall H. Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro // Biomaterials. 2005. Vol. 26, no. 12. P. 1369–1379. doi: 10.1016/j.biomaterials.2004.04.045.
  60. Zhu S., Yuan Q., Yin T., You J., Gu Z., Xiong S., et al. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications // Journal of Materials Chemistry. B. 2018. Vol. 6, no. 18. P. 2650–2676. doi: 10.1039/c7tb02999c.
  61. Kolesky D.B., Homan K.A., Skylar-Scott M.A., Lewis J.A. Three-dimensional bioprinting of thick vascularized tissues // Proceedings of the National Academy of Sciences. 2016. Vol. 113. P. 3179–3184. doi: 10.1073/pnas.1521342113.
  62. Moreira Teixeira L.S., Feijen J., van Blitterswijk C.A., Dijkstra P.J., Karperien M. Enzymecatalyzed crosslinkable hydrogels: emerging strategies for tissue engineering // Biomaterials. 2012. Vol. 33, no. 5. P. 1281–1290. doi: 10.1016/j.biomaterials.2011.10.067.
  63. Zhao D., Tie C., Cheng B., Yang S., Wang X., Sun Z., et al. Effect of altering photocrosslinking conditions on the physical properties of alginate gels and the survival of photoencapsulated cells // Polymer Degradation and Stability. 2020. Vol. 179. P. 109297. doi: 10.1016/j.polymdegradstab.2020.109297.
  64. Da Conceicao Ribeiro R., Pal D., Ferreira A.M., Gentile P., Benning M., Dalgarno K. Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication // Biofabrication. 2019. Vol. 11. P. 015014. doi: 10.1088/1758-5090/aaf625.
  65. Weisel J.W., Litvinov R.I. Mechanisms of fibrin polymerization and clinical implications // Blood. 2013. Vol. 121, no. 10. P. 1712–1719. doi: 10.1182/blood-2012-09-306639.
  66. Rao R.R., Peterson A.W., Ceccarelli J., Putnam A.J., Stegemann J.P. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials // Angiogenesis. 2012. Vol. 15. P. 253–264. doi: 10.1007/s10456-012-9257-1.
  67. Sorkio A., Koch L., Koivusalo L., Deiwick A., Miettinen S., Chichkov B., et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks // Biomaterials. 2018. Vol. 171. P. 57–71. doi: 10.1016/j.biomaterials.2018.04.034.
  68. Milazzo G., Ardigo D., Toschi M., Matuska S., Rama P., de Luca M., et al. Holoclar: first of its kind in more ways than one // Cell & Gene Therapy Insights. 2016. Vol. 2, no. 2. P. 183–197. doi: 10.18609/cgti.2016.023.
  69. Hakam M.S., Imani R., Abolfathi N., Fakhrzadeh H., Sharifi A.M. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: an in-vitro study // Biomedical Materials and Engineering. 2016. Vol. 27, no. 6. P. 669–682. doi: 10.3233/BME-161617.
  70. Cubo N., Garcia M., del Cañizo J.F., Velasco D., Jorcano J.L. 3D bioprinting of functional human skin: production and in vivo analysis // Biofabrication. 2017. Vol. 9. P. 015006. doi: 10.1088/1758-5090/9/1/015006.
  71. Choi Y.-J., Yi H.-G., Kim S.-W., Cho D.-W. 3D cell printed tissue analogues: a new platform for theranostics // Theranostics. 2017. Vol. 7, no. 12. P. 3118–3137. doi: 10.7150/thno.19396.
  72. Montalbano G., Toumpaniari S., Popov A., Duan P., Chen J., Dalgarno K., et al. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering // Materials Science & Engineering C. 2018. Vol. 91. P. 236–246. doi: 10.1016/j.msec.2018.04.101.
  73. He K., Wang X. Rapid prototyping of tubular polyurethane and cell/hydrogel constructs // Journal of Bioactive and Compatible Polymers. 2011. Vol. 26, no. 4. P. 363–374. doi: 10.1177/0883911511412553.
  74. Xu M., Van Y., Liu H., Yag Y., Wang X. Controlled adipose-derived stromal cells differentiation into adipose and endothelial cells in a 3D structure established by cell-assembly technique // Journal of Bioactive and Compatible Polymers. 2009. Vol. 24, no. 1s. P. 31–47. doi: 10.1177/0883911509102794.
  75. Wang X., Yan Y., Zhang R. Rapid prototyping as tool for manufacturing bioartificial livers // Trends in Biotechnology. 2007. Vol. 25, no. 11. P. 505–513. doi: 10.1016/j.tibtech.2007.08.010.
  76. Wang X. Intelligent freeform manufacturing of complex organs // Artificial Organs. 2012. Vol. 36, no. 11. P. 951–961. doi: 10.1111/j.1525-1594.2012.01499.x.

补充文件

附件文件
动作
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».