Effect of surfactants (sodium dodecyl sulfate, cetyltrimethylammonium bromide) on cell membrane permeability of red beet roots Beta vulgaris L.

封面

如何引用文章

全文:

详细

The paper considers the effect of two surfactants - anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) - on red beet root Beta vulgaris L. Damage to root tissues of Beta vulgaris L. was assessed in terms of an increased release of electrolytes and vacuolar pigments of betacyanins from cells using conductometric and spectrophotometric methods, respectively. It was shown that SDS and CTAB do not impair the cell membrane permeability at concentrations of up to 0.05 and 0.005 g/l, respectively. An increase in the concentration of these surfactants led to a subsequent rise in the electrolyte and betacyanin release from the beet tissues, indicating the negative effect of the surfactants. A good concentration dependence was observed, i.e., higher concentrations of the studied detergents correlated with higher values of the electric conductivity and optical density of the incubation solutions. A significant toxic effect was noted when the test plant was treated with the studied compounds at a concentration of 1 g/l. Thus, two hours after the onset of measurements, the electrical conductivity of the aqueous solution, in which the beet roots previously subjected to 30-min treatment with 1 g/l SDS and CTAB solutions were incubated, increased to 42 and 81 yS/cm, respectively. These values exceeded the reference values by 89 and 272%, respectively. At the same time, the betacyanin yield exceeded the reference values by 327 and 805%, respectively. The experiments showed that SDS and CTAB increase the permeability of plant cell membranes of both plasmalemma and tonoplast. The tested methods proved to be fast (three hours response time) and efficient. These methods can be used to rapidly assess the effect of surfactants on plant bodies, to study the membranotropic effect of substances, and to control the breeding crop plants in terms of their resistance to unfavourable conditions.

作者简介

M. Krapivnaya

Irkutsk National Research Technical University

Email: krapivnaya.m@list.ru

V. Domracheva

Irkutsk National Research Technical University

Email: domra@istu.edu

D. Stom

Irkutsk National Research Technical University; Irkutsk State University; Baikal Museum of the SB RAS

Email: stomd@mail.ru

参考

  1. Niraula T.P., Bhattarai A., Chatterjee S.K. Sodium dodecyl sulphate: a very useful surfactant for scientific investigations // Journal of Innovation and Knowledge. 2014. Vol. 2, no. 1. P. 111-113.
  2. Kagalwala A.Y., Kavitha K. Effects of surfactant (sodium lauryl sulphate) on Hydrilla verticillata // International Journal of Life Sciences Biotechnology and Pharma Research. 2012. Vol. 1, no. 2. P. 128-138.
  3. Yadav S.N., Rai S., Shah P., Roy N., Bhattarai A. Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium // Journal of Molecular Liquids. 2022. Vol. 355. P. 118949. https://doi.org/10.1016/j.molliq.2022.118949.
  4. Li Y., Lee J.-S. Staring at protein-surfactant interactions: fundamental approaches and comparative evaluation of their combinations: a review // Analytica Chimica Acta. 2019. Vol. 1063. P. 18-39. https://doi.org/10.1016/j.aca.2019.02.024.
  5. Bondi C.A.M., Marks J.L., Wroblewski L.B., Raatikainen H.S., Lenox S.R., Gebhardt K.E. Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products // Environmental Health Insights. 2015. Vol. 9. P. 27-32. https://doi.org/10.4137/EHI.S31765.
  6. Rauniyar B.S., Bhattarai A. Study of conductivity, contact angle and surface free energy of anionic (SDS, AOT) and cationic (CTAB) surfactants in water and isopropanol mixture // Journal of Molecular Liquids. 2021. Vol. 323, no. 4. P. 114604. https://doi.org/10.1016/j.molliq.2020.114604.
  7. Genisel M., Eren O. Evaluation of physiological and biochemical aberration linked to effect of sodium dodecyl sulphate on barley seedlings // SN Applied Sciences. 2020. Vol. 2. Article number: 514. https://doi.org/10.1007/s42452-020-2289-z.
  8. Saksonov M.N., Stom D.I., Kupchinsky A.B. Combined action of sodium dodecyl sulphate, tween-85 and oil on duckweed (Lemna minor) // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 720. P. 012051. https://doi.org/10.1088/1755-1315/720/1/012051.
  9. Pang S., Willis L. Final report on the safety assessment of cetrimonium chloride, cetrimonium bromide, and steartrimonium chloride // International Journal of Toxicology. 1997. Vol. 16, no. 3. P. 195-220.
  10. Lai Y.S., Zhou Y., Eustance E., Straka L., Wang Z., Rittmann B.E. Cell disruption by cationic surfactants affects bioproduct recovery from Synechocystis sp. PCC 6803 // Algal Research. 2018. Vol. 34, no. 12. P. 250255. https://doi.org/10.1016/j.algal.2018.08.010.
  11. Юрков А.П., Крюков А.А., Горбунова А.О., Кожемяков А.П., Степанова Г.В., Мачс Э.М.. Молекулярно-генетическая идентификация грибов арбускулярной микоризы // Экологическая генетика. 2018. Т. 16. N 2. С. 11-23. https://doi.org/10.17816/ecogen16211-23.
  12. Allen G.C., Flores-Vergara M.A., Krasynanski S., Kumar S., Thompson W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide // Nature Protocols. 2006. Vol. 1, no. 5. P. 2320-2325. https://doi.org/10.1038/nprot.2006.384.
  13. Tsagkaropoulou G., Allen F.J., Clarke S.M., Camp P.J. Self-assembly and adsorption of cetyltrimethylammonium bromide and didodecyldimethylammonium bromide surfactants at the mica-water interface // Soft Matter. 2019. Vol. 15, no. 41. P. 8402-8411. https://doi.org/10.1039/C9SM01464K.
  14. Aquiirre-Ramirez M., Silva-Jimenez H., Banat I.M., Diaz De Rienzo M.A. Surfactants: physicochemical interactions with biological macromolecules // Biotechnology Letters. 2021. Vol. 43. P. 523-535. https://doi.org/10.1007/s10529-020-03054-1.
  15. Грищенкова Н.Н., Лукаткин А.С. Определение устойчивости растительных тканей к абиотическим стрессам с использованием кондуктометрического метода // Поволжский экологический журнал. 2005. N 1. С. 3-11.
  16. Приходько Н.В. Изменение проницаемости клеточных мембран как общее звено механизмов неспецифической реакции растений на внешние воздействия // Физиология и биохимия культурных растений. 1977. Т. 9. N 3. С. 301-309.
  17. Kolesnikova E.V., Ozolina N.V., Nurminsky V.N., Nesterkina I.S., Sitneva L.A., Lapteva T.I. Evaluation of the effect of oxidative stress on roots of red beet (Beta vulgaris L.) // Journal of Stress Physiology & Biochemistry. 2014. Vol. 10, no. 4. P. 5-12.
  18. Hatsugai N., Katagiri F. Quantification of plant cell death by electrolyte leakage assay // Bio-protocol. 2018. Vol. 8, no. 5. P. 1-7. https://doi.org/10.21769/BioProtoc.2758.
  19. Azeredo H.M.C. Betalains: properties, sources, applications, and stability - a review // International Journal of Food Science and Technology. 2009. Vol. 44, no. 12. P. 2365-2376. https://doi.org/10.1111/j.1365-2621.2007.01668.x.
  20. Sadowska-Bartosz I., Bartosz G. Biological properties and applications of betalains // Molecules. 2021. Vol. 26, no. 9. P. 2520. https://doi.org/10.3390/molecules26092520.
  21. Саенко И.И., Тарасенко О.В., Дейнека В.И., Дейнека Л.А. Бетацианины корнеплодов красной столовой свеклы // Научные ведомости Белгородского государственного университета. Серия: Естественные науки. 2012. Т. 18. N 3. С. 194-200.
  22. Кожемяко А.В., Сергеева И.Ю., Долголюк И.В. Экспериментальное определение биологически активных соединений в выжимках свеклы и моркови, районированных в Сибирском регионе // Техника и технология пищевых производств. 2021. Т. 51. N 1. С. 179-187. https://doi.org/10.21603/2074-9414-2021-1-179-187.

补充文件

附件文件
动作
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».