Контроль сорбционного процесса декофеинизации напитка мате

Обложка

Цитировать

Полный текст

Аннотация

Цель проведенной работы заключалась в изучении способа декофеинизации напитка чая мате (настоя листьев Ilex paraguariensis) – одного из наиболее популярных напитков в Южной Америке, доступного на рынке России. Для определения качественного и количественного состава основных компонентов настоя использовали обращенно-фазовую высокоэффективную жидкостную хроматографию на фазе Kromasil 100-5C4. Замена традиционно используемой для этого фазы С18 была связана с необходимостью исключить модифицирование привитой фазы β-циклодекстрином при работе с настоями, в которых хлорогеновые кислоты образуют комплексы типа «гость – хозяин» с β-циклодекстрином для снижения степени сорбции кофеина на бентонитовой глине. Направленный подбор основных модификаторов подвижной фазы позволяет управлять положением кофеина среди монокофеоилхинных кислот, а градиентный режим элюирования дает возможность детектировать кофеин, монокофеоилхинные и дикофеоилхинные кислоты одновременно. При использовании бентонитовой глины в Na+-форме удается удалить более 95% кофеина, но с потерей как монокофеоилхинных (порядка 25%), так и дикофеоилхинных (порядка 50%) кислот. Учитывая, что по литературным данным именно дикофеоилхинные кислоты образуют более устойчивые комплексы включения с β-циклодекстрином по сравнению с монокофеоилхинными кислотами, в напиток было предложено добавлять β-циклодекстрин. Отметим, что и подготовленные бентонитовые глины (как эффективные интеросорбенты) и β-циклодекстрин разрешены в использовании в пищевой и фармацевтической промышленности. В результате было установлено, что потери моно- и дикофеоилхинных кислот удается снизить более чем в 2 раза.

Об авторах

В. И. Дейнека

Белгородский государственный национальный исследовательский университет

Email: deineka@bsuedu.ru
ORCID iD: 0000-0002-3971-2246

Е. Ю. Олейниц

Белгородский государственный национальный исследовательский университет

Email: oleinits_e@bsuedu.ru
ORCID iD: 0000-0003-2065-6296

М. С. Фарафонова

Белгородский государственный национальный исследовательский университет

Email: 1126327@bsu.edu.ru
ORCID iD: 0000-0003-3859-9138

Л. А. Дейнека

Белгородский государственный национальный исследовательский университет

Email: deyneka@bsu.edu.ru
ORCID iD: 0000-0002-4101-2468

А. Н. Чулков

Белгородский филиал Центра оценки качества зерна и продуктов его переработки

Email: ach87@mail.ru
ORCID iD: 0000-0002-7904-1424

Список литературы

  1. Peres R.G., Tonin F.G., Tavares M.F.M., Rodriguez-Amaya D.B. HPLC-DAD-ESI/MS identification and quantification of phenolic compounds in Ilex paraguariensis beverages and on-line evaluation of individual antioxidant activity // Molecules. 2013. Vol. 18, no. 4. P. 3859–3871. doi: 10.3390/molecules18043859.
  2. Grujic N., Lepojevic Z., Srdjenovic B., Vladic J., Sudji J. Effects of different extraction methods and conditions on the phenolic composition of mate tea extracts // Molecules. 2012. Vol. 17, no. 3. P. 2518–2528. doi: 10.3390/molecules17032518.
  3. Калинин А.Я. Кофеин-друг или враг? // Компетентность. 2014. N 9–10. С. 43–51. EDN: TFNULV.
  4. Сиволап Ю.П., Дамулин И.В. Кофеин и болезнь Альцгеймера // Неврологический вестник. 2017. Т. 49. N 4. С. 5–10. EDN: ZWTIJL.
  5. Абдурахимов А.Х., Гофурова Х.З. Кофеин и здоровье // Life Sciences and Agriculture. 2023. N 1. С. 1–4.
  6. Bae J., Park P.S., Chun B.-Y, Choi B.Y., Kim M.K., Shin M.-H., et al. The effect of coffee, tea, and caffeine consumption on serum uric acid and the risk of hyperuricemia in Korean Multi-Rural Communities Cohort // Rheumatology International. 2015. Vol. 35. P. 327–336. doi: 10.1007/s00296-014-3061-8.
  7. Pietsch A. Decaffeination – process and quality // The craft and science of coffee / ed. B. Folmer. Academic Press, 2017. P. 225–243. doi: 10.1016/B978-0-12-803520-7.00010-4.
  8. Shiono T., Yamamoto K., Yotsumoto Y., Kawai J., Imada N., Hioki J., et al. Selective decaffeination of tea extracts by montmorillonite // Journal of Food Engineering. 2017. Vol. 200. P. 13–21. doi: 10.1016/j.jfoodeng.2016.12.015.
  9. Do Espirito Santo A.T., Siqueira L.M., Almeida R.N., Vargas R.M.F., do N Franceschini G., Kunde M.A., et al. Decaffeination of yerba mate by supercritical fluid extraction: improvement, mathematical modelling and infusion analysis // The Journal of Supercritical Fluids. 2021. Vol. 168. P. 105096. doi: 10.1016/j.supflu.2020.105096.
  10. European patent no. WO1998042209A1. Decaffeinated mate extracts and the use thereof / R. Maffei Facino, M. Carini, M. Mariani. Applic. 16.03.1998; publ. 01.10.1998.
  11. Duarte M.M., de Cássia Tomasi J., Helm C.V., Amano E., Lazzarotto M., Bueno de Godoy R.C., et al. Caffeinated and decaffeinated mate tea: effect of toasting on bioactive compounds and consumer acceptance // Revista Brasileira de Ciências Agrárias. 2020. Vol. 15, no. 3. P. e8513. doi: 10.5039/agraria.v15i3a8513.
  12. Quintero-Jaramillo J.A., Carrero-Mantilla J.I., Sanabria-González N.R. A review of caffeine adsorption studies onto various types of adsorbents // The Scientific World Journal. 2021. P. 9998924. doi: 10.1155/2021/9998924.
  13. Suarez-Quiroz M.L., Campos A.A., Alfaro G.V., Gonzalez-Rios O., Villeneuve P., Figueroa-Espinoza M.C. Isolation of green coffee chlorogenic acids using activated carbon // Journal of Food Composition and Analysis. 2014. Vol. 33, no. 1. P. 55–58. doi: 10.1016/j.jfca.2013.10.005.
  14. Дейнека В.И., Олейниц Е.Ю., Дейнека Л.А. Хроматографическое поведение монокофеоилхинных и дикофеоилхинных кислот в условиях ОФ ВЭЖХ: зависимость от строения // Сорбционные и хроматографические процессы. 2021. Т. 21. N 4. С. 458–465. doi: 10.17308/sorpchrom.2021.21/3628. EDN: BTSLDP.
  15. Андреева Е.Ю., Тан Ц., Дмитриенко С.Г., Золотов Ю.А. Определение кофеина, теобромина и теофиллина в чае методом обращенно-фазовой высокоэффективной жидкостной хроматографии // Сорбционные и хроматографические процессы. 2010. T. 10. N 6. С. 805–812. EDN: NCVBLL.
  16. Блинова И.П., Олейниц Е.Ю., Саласина Я.Ю., Дейнека В.И., Ань В.Т.Н., Ань Н.В. Одновременное определение хлорогеновых кислот и кофеина в кофе методом обращенно-фазовой высокоэффективной жидкостной хроматографии // Известия высших учебных заведений. Серия Химия и химическая технология. 2023. Т. 66. N 2. С. 45–52. doi: 10.6060/ivkkt.20236602.6711. EDN: JYRGMN.
  17. Deineka V.I., Doronin A.G., Deineka L.A., Oleinits E.Yu. Retention of cyclodextrins under the conditions of reversed-phase chromatography and determining the stability constants of inclusion complexes of antocyanins with β-cyclodextrin // Russian Journal of Physical Chemistry A. 2018. Vol. 92. P. 2325–2329. doi: 10.1134/S0036024418110079.
  18. Gebara K.S., Gasparotto-Junior A., Santiago P.G., Cardoso C.A.L., de Souza L.M., Morand C., et al. Daily intake of chlorogenic acids from consumption of maté (Ilex paraguariensis A.St.-Hil.) traditional beverages // Journal of Agricultural and Food Chemistry. 2017. Vol. 65, no. 46. P. 10093–10100. doi: 10.1021/acs.jafc.7b04093.
  19. Butiuk A.P., Martos M.A., Adachic O., Hours R.A. Study of the chlorogenic acid content in yerba mate (Ilex paraguariensis St. Hil.): effect of plant fraction, processing step andharvesting season // Journal of Applied Research on Medicinal and Aromatic Plants. 2016. Vol. 3, no. 1. P. 27–33. doi: 10.1016/j.jarmap.2015.12.003.
  20. Monteiro M., Farah A., Perrone D., Trugo L.C., Donangelo C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans // The Journal of Nutrition. 2007. Vol. 137, no. 10. P. 2196–2201. doi: 10.1093/jn/137.10.2196.
  21. Oleinits Е.Yu., Deineka V.I., Blinova I.P., Deineka L.A. Selectivity control of dicaffeoylquinic acids separation in reversed-phase HPLC with β-cyclodextrine in a mobile phase // Известия высших учебных заведений. Серия Химия и химическая технология. 2022. Т. 65. N 7. С. 54-60. doi: 10.6060/ivkkt.20226507.6599. EDN: YBXVOE.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).