Фазообразование в тройных системах оксидов натрия, редкоземельного металла (скандия, индия, иттербия) и бора

Обложка

Цитировать

Полный текст

Аннотация

Целью проведенного исследования являлось изучение фазовых равновесий в системах Na2O–R2O3–B2O3 (R = In, Sc, Yb). Взаимодействия в системах изучались методом твердофазных реакций. Впервые изучено фазообразование в тройных системах оксидов натрия, редкоземельного металла (скандия, индия, иттербия) и бора в субсолидусной области в интервале температур 700–750 °С. Построены предварительные триангуляции изученных систем. Изотермические сечения систем Na2O–R2O3–B2O3 (R = In, Sc, Yb) при 750 °С представлены восемью, тринадцатью и одиннадцатью треугольниками сосуществующих фаз соответственно. В ходе работы в системе Na2O–Sc2O3–B2O3 нами подтверждено образование трех известных двойных боратов натрия-скандия следующих составов: Na3Sc(BO3)2, Na3Sc2(BO3)3, NaScB2O5. Установлено образование двойного бората натрия-скандия ориентировочного состава Na3ScB8O15, которое проиндицировалось в моноклинной сингонии (ориентировочная пространственная группа симметрии Сс). Уточнение параметров элементарной ячейки проведено методом Ле-Бейля: a = 12,625(6), b = 7,725(2), c = 10,409(3), β = 53,19(2)°. Система Na2O– Yb2O3–B2O3 содержит три новых двойных бората: составов Na3Yb(BO3)2, Na3YbB8O15 и состава, близкого к стехиометрическому соотношению Na2O•Yb2O3•B2O3. Впервые экспериментально показано образование соединений: Na3YbB8O15 изоструктурного Na3GdB8O15 и Na3Yb(BO3)2 изоформульного, но не изоструктурного Na3Y(BO3)2. Тройная оксидная система с индием оказалась эвтектичной, то есть без образования двойных боратов натрия-индия.

Об авторах

А. К. Субанаков

Байкальский институт природопользования СО РАН; Бурятский государственный университет им. Доржи Банзарова

Email: subanakov@binm.bscnet.ru
ORCID iD: 0000-0002-1674-283X

Е. В. Ковтунец

Байкальский институт природопользования СО РАН

Email: kovtunets@binm.ru
ORCID iD: 0000-0003-1301-1983

А. Н. Соболев

Бурятский государственный университет им. Доржи Банзарова

Email: Sobolevan02@mail.ru
ORCID iD: 0009-0006-2286-1380

А. С. Танхаева

АО «Хиагда»

Email: zandeeva02@mail.ru
ORCID iD: 0009-0005-9826-6070

Список литературы

  1. Chen C., Sasaki T., Li R., Wu Y., Lin Z., Mori Y., et al. Nonlinear optical borate crystals: principles and applications. Wiley‐VCH Verlag GmbH & Co. KGaA; 2012, 406 p. doi: 10.1002/9783527646388.
  2. Mutailipu M., Poeppelmeier K.R., Pan S. Borates: a rich source for optical materials. Chemical Reviews. 2021;121(3):1130-1202. doi: 10.1021/acs.chemrev.0c00796.
  3. Omanwar S.K., Sonekar R.P., Bajaj N.S. Borate phosphors: processing to applications. Boca Raton: Imprint CRC Press; 2022, 320 p. doi: 10.1201/9781003207757.
  4. Sharma L., Adiga S.P., Alshareef H.N., Barpanda P. Fluorophosphates: next generation cathode materials for rechargeable batteries. Advanced Energy Materials. 2020;10(43):2001449. doi: 10.1002/aenm.202001449.
  5. Yang S.-H., Xue H., Guo S.-P. Borates as promising electrode materials for rechargeable batteries. Coordination Chemistry Reviews. 2021;427:213551. doi: 10.1016/j.ccr.2020.213551
  6. Yu H., Pan Z., Zhang H., Wang J. Recent advances in self-frequency-doubling crystals. Journal of Materiomics. 2016;2(1):55-65. doi: 10.1016/j.jmat.2015.12.001.
  7. Mascetti J., Vlasse M., Fouassier C. The crystal chemistry of the new rare-earth sodium borates Na3Ln(BO3)2 (Ln = La, Nd). Journal of Solid State Chemistry. 1981;39(3):288-293. doi: 10.1016/0022-4596(81)90262-0.
  8. Mascetti J., Fouassier C., Hagenmuller P. Concentration quenching of the Nd3+ emission in alkali rare earth borates. Journal of Solid State Chemistry. 1983;50(2):204-212. doi: 10.1016/0022-4596(83)90189-5.
  9. Wang Z., Li H., Cai G., Jin Z. Synthesis, crystal structure, and thermal stability of new borates Na3REB2O6 (RE = Pr, Sm, Eu). Powder Diffraction. 2016;31(2):110-117. doi: 10.1017/s0885715616000051.
  10. Zhang Y., Chen X.L., Liang J.K., Xu T. Synthesis and structural study of new rare earth sodium borates Na3Ln(BO3)2 (Ln = Y, Gd). Journal of Alloys and Compounds. 2002;333(1-2): 72-75. doi: 10.1016/S0925-8388(01)01689-9.
  11. Fang J., Zhang X., Yao J., Zhang G., Wang K. Trisodium scandium bis(orthoborate). Acta Crystallographica Section E. 2012;68(36). doi: 10.1107/S1600536812015061.
  12. Becker P., Held P. Crystal structure of sodium scandium borate, NaScB2O5. Zeitschrift für Kristallographie – New Crystal Structures. 2001;216 (1-4):35. doi: 10.1524/ncrs.2001.216.14.35.
  13. Becker P., Fröhlich R. Crystal structure of trisodium gallium borate, Na3GaB4O9, a new anhydrous borate structure type. Zeitschrift für Kristallographie – New Crystal Structures. 2001;216(1-4):31-32. doi: 10.1524/ncrs.2001.216.14.31.
  14. Zhou W.W., Zhuang R.Z., Zhao W., Wang G.F., Zhang L.Z., Ma J.G., et al. Second harmonic generation in Na3Gd2(BO3)3 crystals. Crystal Research and Technology. 2011;46(9):926-930. doi: 10.1002/crat.201100077.
  15. Yang Z., Ye N., Keszler D.A. Na3Sc2(BO3)3. Acta Crystallographica Section E. 2006;62(12):266-268. doi: 10.1107/S1600536806036737.
  16. Nagpure P.A., Omanwar S.K. Synthesis and photoluminescence study of rare earth activated phosphor Na2La2B2O7. Journal of Luminescence. 2012;132(8):2088-2091. doi: 10.1016/j.jlumin.2012.03.068.
  17. Shan F., Zhang G., Yao J., Xu T., Zhang X., Fu Y., et al. Growth, structure, and optical properties of a self-activated crystal: Na2Nd2O(BO3)2. Optical Materials. 2015;46:461-466. doi: 10.1016/j.optmat.2015.05.004.
  18. Corbel G., Leblanc M., Antic-Fidancev E., Lemaı̂tre- Blaise M. Crystal structure of sodium rare earth oxyborates Na2Ln2(BO3)2O (Ln = Sm, Eu, and Gd) and optical analysis of Na2Gd2(BO3)2O:Eu3+. Journal of Solid State Chemistry. 1999;144(1):35-44. doi: 10.1006/jssc.1998.8107.
  19. Jia Z., Xia M. Congruent melt terbium-rich borate Na2Tb2B2O7: synthesis, crystal structure, optical and magnetic properties. Journal of Alloys and Compounds. 2018;743:537-542. doi: 10.1016/j.jallcom.2018.02.031.
  20. Soni A.K., Rai V.K., Mahata M.K. Yb3+ sensitized Na2Y2B2O7:Er3+ phosphors in enhanced frequency upconversion, temperature sensing and field emission display. Materials Research Bulletin. 2017;89:116-124. doi: 10.1016/j.materresbull.2017.01.009.
  21. Corbel G., Leblanc M. Crystal structure of Na2M2(BO3)2O (M = Al, Ga); comparison with other layered oxyborates and SiP2O7. Journal of Solid State Chemistry. 2000;154(2):344-349. doi: 10.1006/jssc.2000.8792.
  22. He M., Chen X.L., Zhou T., Hu B.Q., Xu Y.P., Xu T. Crystal structure and infrared spectra of Na2Al2B2O7. Journal of Alloys and Compounds. 2001;327(1-2):210-214. doi: 10.1016/s0925-8388(01)01561-4.
  23. Shan F., Kang L., Zhang G., Yao J., Lin Z., Xia M., et al. Na3Y3(BO3)4: a new noncentrosymmetric borate with an open-framework structure. Dalton Transactions. 2016;45(17):7205-7208. doi: 10.1039/C6DT00950F.
  24. Gravereau P., Chaminade J.-P., Pechev S., Nikolov V., Ivanova D., Peshev P. Na3La9O3(BO3)8, a new oxyborate in the ternary system Na 2O–La2O3–B2O3: preparation and crystal structure. Solid State Sciences. 2002;4(7):993-998. doi: 10.1016/S1293-2558(02)01344-4.
  25. Shan F., Xia M., Zhang G., Yao J., Zhang X., Xu T., et al. Growth, structure, and optical properties of a self-activated crystal: Na3Nd9O3(BO3)8. Solid State Sciences. 2015;41:31-35. doi: 10.1016/j.solidstatesciences.2015.02.002.
  26. Zhang J.-C., Wang Y.-H., Zhang Z.-Y., Xie P., Li H.-H., Jiang Y.-P. Vacuum ultraviolet excited photoluminescence properties of novel Na3Y9O3(BO3)8:Tb 3+ phosphor. Chinese Physics Letters. 2008;25(4):1453. doi: 10.1088/0256-307X/25/4/078.
  27. Bi W.Y., Wang W., Zhang R.J. New red phosphor Na3EuB8O15 with an open-window tubular structure. Acta Crystallographica. Section C, Structural Chemistry. 2021;77(5):235-239. doi: 10.1107/S2053229621004071.
  28. Zhao D., Li Y.-N., Fan Y.P., Liu B., Zhang S.-R., Zhang R.-J. Crystal structure, theoretical studies and luminescent properties of a new borate Na3GdB8O15 with one-dimensional broad-banded anionic framework. Dalton Transactions. 2020;49(37):13167-13175. doi: 10.1039/D0DT02586K.
  29. Jiao J., Jin W., Zhang M., Guo Z., Yang Z., Pan S. From β-Na2B6O10 to Na3AlB8O15 and Na3Al2B7O15: structural tuning of anionic-group architectures by substitution ofbycovalent tetrahedra. Chemistry: a European journal. 2022;28(4):e202103966. doi: 10.1002/chem.202103966.
  30. Hoppe R., Schepers B., Roehrborn H.J., Vielhaber E. Über oxoscandate: LiScO2 und NaScO2. Zeitschrift für anorganische und allgemeine Chemie. 1965;339(3-4):130-143. doi: 10.1002/ZAAC.19653390304.
  31. Hoppe R., Schepers B. Über Alkaliindate: LilnO2 und NalnO2. Zeitschrift für anorganische und allgemeine Chemie. 1958;295(3-4):233-240. doi: 10.1002/ZAAC.19582950310.
  32. Keszler D.A., Sun H. Structure of ScBO3. Acta Crystallographica, Section C Crystal Structure Communications. 1988;44(9):1505-1507. doi: 10.1107/S0108270188005086.
  33. Cox J.R., Keszler D.A. InBO3. Acta Crystallographica, Section C Crystal Structure Communications. 1994;50(12):1857-1859. doi: 10.1107/s0108270194003999.
  34. Kargin Yu.F., Egorysheva A.V. Phase relations in the solidus region of the Na2O–Bi2O3–B2O3 system. Russian Journal of Inorganic Chemistry. 2005;50(12):1942-1945.
  35. Asadov M.M., Akhmedova N.A., Mamedova S.R., Tagiev D.B. Phase equilibria thermodynamic analysis, and electrical properties of samples in the system Li2O–B2O3–Yb2O3. Russian Journal of Inorganic Chemistry. 2020;65(7):1061-1068. doi: 10.1134/S0036023620070013.
  36. Subanakov A.K., Kovtunets E.V., Bazarov B.G., Bazarova J.G. Double borates of potassium (rubidium) and rare-earth elements. Journal of Structural Chemistry. 2022;63(7):1153-1169. doi: 10.1134/S0022476622070101.
  37. Subanakov A.K., Kovtunets E.V., Bazarov B.G., Bazarova J.G. Synthesis, crystal structure, and thermal stability of double borate Na3ErB2O6. Chimica Techno Acta. 2021;8(4):1-5. doi: 10.15826/chimtech.2021.8.4.02.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).