Биосинтез наночастиц металлов и их апробация на семенах льна-долгунца

Обложка

Цитировать

Полный текст

Аннотация

В данной работе представлены результаты исследования биопрепарата, основой для которого послужил микробный биопрепарат ЖФБ (жидкофазное биосредство), в который были добавлены наночастицы меди или железа, синтезированные методом зеленого синтеза. Полученные наночастицы были исследованы методом ИК-спектроскопии диффузного отражения и вводились в ЖФБ на этапе его дозревания в объемном соотношении ЖФБ:раствор частиц 50:1. В результате получено два новых биопрепарата ЖФБ-Fe и ЖФБ-Cu. Все биопрепараты, а также наночастицы железа (Fe НЧ) и меди (Cu НЧ) были протестированы в лабораторном эксперименте на семенах льна сорта Тверской. Наночастицы железа или меди в составе биопрепаратов положительно повлияли на всхожесть семян. В варианте ЖФБ-Fe всхожесть семян составила 86–91%, что на 3–12% больше по сравнению с контролем. В случае использования ЖФБ-Cu всхожесть семян варьировалась от 86 до 93%, что на 3–11% больше по сравнению с контролем. Однако максимальная средняя длина одного проростка в этих вариантах составила 14,5–14,8 см. Тогда как на среднюю длину одного проростка существенно повлиял полив семян раствором, содержащим только наночастицы железа, т.к. в данном варианте было отмечено максимальное значение данного параметра (16,1±1,2 см). Полученные результаты показали, что данное исследование весьма перспективно, но требует дополнительных экспериментов по варьированию концентрации наночастиц в биопрепарате ЖФБ.

Об авторах

Н. А. Любимова

ФИЦ «Почвенный институт им. В.В. Докучаева»

Email: n.nemygina@gmail.com

Г. Ю. Рабинович

ФИЦ «Почвенный институт им. В.В. Докучаева»

Email: 2016vniimz-noo@list.ru

Список литературы

  1. Bhagat M., Anand R., Sharma P., Rajput P., Sharma N., Singh K. Review – multifunctional copper nanoparticles: synthesis and applications // ECS Journal of Solid State Science and Technology. 2021. Vol. 10, no. 6. P. 063011– 06321. http://doi.org/10.1149/2162-8777/ac07f8.
  2. Siddiqi K.S., Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review // Biomaterials Research. 2020. Vol. 24. P. 11–25. http://doi.org/10.1186/s40824-020-00188-1.
  3. Iqbal A., Iqbal K., Li B., Gong D., Qin W. Recent advances in iron nanoparticles: preparation, properties, biologicaland environmental application // Journal of Nanoscience and Nanotechnology. 2017. Vol. 17. P. 4386–4409. http://doi.org/10.1166/jnn.2017.14196.
  4. Wee J.L., Law M.C., Chan Y.S., Choy S.Y., Tiong A.N.T. The potential of Fe-based magnetic nanomaterials for the agriculture sector // Chemistry Select. 2022. Vol. 7, no. 17. P. e202104603–e202104633. http://doi.org/10.1002/slct.202104603.
  5. Satdev, Mandal N. A review on effect of copper and iron nanoparticle on agricultural crop // International Journal if Inclusive Development. 2020. Vol. 6, no. 1. P. 31–36. http://doi.org/10.30954/24544132.1.2020.6.
  6. Laporte D., Rodríguez F., González A., Zuniga A., Casto-Nallar E., Saez C.A., et al. Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta) // BMC Plant Biology. 2020. Vol. 20. P. 25–41. https://doi.org/10.1186/s12870-019-2229-5.
  7. Иванищев В.В. Роль железа в биохимии растений // Известия Тульского государственного университета. Естественные науки. 2019. N 3. C. 149–159.
  8. Nguyen D.V., Nguyen H.M., Le N.T., Nguyen K.N., Le H.M., Nguyen A.T., et al. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions // Journal of Plant Growth Regulation. 2022. Vol. 41. P. 364–375. http://doi.org/10.1007/s00344-021-10301-w.
  9. Lopez-Vargas E.R., Ortega-Ortiz H., Cadenas-Pliego G., Romenus K.A., de la Fuente M.C., Benavides-Mendoza A., et al. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes // Applied Sciences. 2018. Vol. 8, no. 7. P. 1020–1035. http://doi.org/10.3390/app8071020.
  10. Thiruvengadam S., Ganesan M., Varadharajaperumal P. Impact on foliar application of copper nanoparticles for the growth in Zea mays // Bioscience Biotechnology Research Communications. 2021. Vol. 14, no. 3. P. 1248–1255. http://dx.doi.org/10.21786/bbrc/14.3.50.
  11. Shende S., Rathod D., Gade A., Rai M. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.) // IET Nanobiotechnology. 2017. Vol. 11, no. 7. P. 773–781. http://doi.org/10.1049/ietnbt.2016.0179.
  12. Sheykhbaglou R., Sedghi M., Fathi-Achachlouie B. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed // Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences). 2018. Vol. 90, no. 1. P. 485–494. http://doi.org/10.1590/0001-3765201820160251.
  13. Yoon H., Kang Y.-G., Chang Y.-S., Kim J.-H. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana // Nanomaterials. 2019. Vol. 9, no. 11. P. 1543–1545. http://doi.org/10.3390/nano9111543.
  14. Haydar M.S., Ghosh S., Manda l.P. Application of iron oxide nanoparticles as micronutrient fertilizer in mulberry propagation // Journal of Plant Growth Regulation. 2022. Vol. 41. P. 1726–1746. https://doi.org/10.1007/s00344-021-10413-3.
  15. Rui M., Ma C., Hao Y., Guo J., Rui Yu., Tanget X., et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea) // Frontiers in Plant Science. 2016. Vol. 7. P. 1–10. http://doi.org/10.3389/fpls.2016.00815.
  16. Муродова С.С., Давранов К.Д. Комплексные микробные препараты. Применение в сельскохозяйственной практике // Biotechnologia Acta. 2014. Т. 7. N 6. С. 92–101.
  17. Петрова С.Н., Парахин Н.В. Микробные препараты как способ формирования эффективных растительно-микробных систем // Зернобобовые и крупяные культуры. 2013. N 2. С. 86–91.
  18. Пат. N 2428405, Российская Федерация, C05F 11/02. Способ получения жидкофазного биосредства для растениеводства и земледелия / Г.Ю. Рабинович, Н.В. Фомичева, Ю.Д. Смирнова; заявитель и патентообладатель Государственное научно-исследовательское учреждение Всероссийский научно-исследовательский институт сельскохозяйственного использования мелиорированных земель. Заявл. 10.02.2010; опубл. 10.09.2011. Бюл. N 25.
  19. Любимова Н.А., Рабинович Г.Ю. Влияние магнийсодержащего биосредства на всхожесть и биометрические параметры проростков льна-долгунца // Достижения науки и техники АПК. 2022. Т. 36. N 9. С. 37–42. http://doi.org/10.53859/02352451_2022_36_9_37.
  20. Kuang Y., Wang Q., Chen Z., Megharaj M., Naidu R. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles // Journal of Colloid and Interface Science. 2013. Vol. 410. P. 67–73. http://doi.org/10.1016/j.jcis.2013.08.020.
  21. Anu Y., Vijay M.D. Camellia sinensis mediated synthesis of iron nanoparticles and its encapsulation for decolorization of dyes // BioChemistry: An Indian Journal. 2016. Vol. 10, no. 1. P. 20–29.
  22. Asghar M.A., Zahir E., Shahid S.M., Khan M.N., Asghar M.A., Iqbal J., et al. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity // LWT – Food Science and Technology. 2018. Vol. 90. P. 98– 107. http://doi.org/10.1016/j.lwt.2017.12.009.
  23. Преч Э., Бюльман Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных: монография / пер. с англ. М.: Мир, 2006. 439 с.
  24. Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений: монография / пер. с англ. М.: Лаборатория знаний, 2011. 557 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).