Каталитическая депарафинизация средних дистиллятов

Обложка

Цитировать

Полный текст

Аннотация

Средние дистиллятные фракции, получаемые на установках первичной переработки нефти, содержат значительное количество н-парафинов, имеющих положительные температуры застывания, что ухудшает низкотемпературные характеристики топлив, производимых из этих фракций. Для улучшения низкотемпературных свойств средних дистиллятных фракций применяют различные депрессорные присадки или проводят депарафинизацию различными способами. Наиболее эффективным процессом депарафинизации является каталитическая. Классические процессы вторичной переработки углеводородных фракций являются высокозатратными и часто нерентабельными для небольших нефтеперерабатывающих заводов (НПЗ). Разработка вторичных процессов переработки углеводородного сырья, применимых на НПЗ средней и малоймощности, на сегодняшний день – актуальная задача. Поэтому нашей целью являлась разработка технологии совмещенных процессов первичной перегонки нефти, поступающей по трубопроводной системе «Восточная Сибирь – Тихий океан», и каталитической депарафинизации получаемых средних дистиллятов. Для определения условий проведения процесса каталитической безводородной депарафинизации разработана экспериментальная установка непрерывного действия производительностью по сырью 10 л/ч, включающая трубчатую печь, реактор со стационарным слоем катализатора, теплообменник, контрольно-измерительные приборы. Эксперименты, выполненные на опытной установке, позволили определить оптимальные технологические параметры осуществления каталитической депарафинизации средних дистиллятов. Показано, что каталитическая депарафинизация средних дистиллятов в условиях, определенных опытным путем, протекает достаточно эффективно на катализаторах крекинга: СГК-1, СГК-5, КН-30-БИМТ, выпускаемых в России. Предложена оптимальная технологическая схема совмещения процесса первичного разделения нефти и каталитической депарафинизации средних дистиллятов. Расчет и оптимизация предложенной технологической схемы выполнены в компьютерной моделирующей системе ChemCad.

Об авторах

Г. В. Боженков

Иркутский национальный исследовательский технический университет

Email: georgy.bozhenkov@yandex.ru

Д. В. Медведев

Филиал ООО «МФЦ Капитал» – МФЦ Нефть

Email: dima93medvedev@mail.ru

Е. В. Рудякова

Иркутский национальный исследовательский технический университет

Email: rudlenka@list.ru

Н. Д. Губанов

Иркутский национальный исследовательский технический университет

Email: gubanov_nd@ex.istu.edu

Список литературы

  1. Кондрашева Н.К., Кондрашев Д.О., Насиф В., Хасан Аль-Резк C.Д., Попова С.В. Низкотемпературные свойства смесевых дизельных топлив с депрессорными присадками // Нефтегазовое дело. Сетевое издание. 2007. N 1.. URL: http://ogbus.ru/article/view/nizkotemperaturnye-svojstvasmesevyx-dizelnyx-topliv-s-depressornymi-prisadkami (28.04.2020).
  2. Митусова Т.Н., Полина Е.В., Калинина М.В. Современные дизельные топлива с присадками к ним. М.: Изд-во «Техника» ООО «ТУМА ГРУПП», 2002. 64 с.
  3. Хавкин В.А. Гидрогенизационные процессы переработки нефти с получением дизельного топлива современного уровня качества // Мир нефтепродуктов. Вестник нефтяных компаний. 2018. N 5. С. 18–20.
  4. Камешков А.В., Гайле А.А. Получение дизельных топлив с улучшенными низкотемпературными свойствами (обзор) // Известия Санкт-Петербургского государственного технологического института (технического университета). 2015. N 29 (55). С. 49–60.
  5. Гайнуллин Р.Р., Гизятуллин Э.Т., Солодова Н.Л., Абдуллин А.И. Получение низкозастывающих нефтепродуктов методами депарафинизации // Вестник Казанского технологического университета. 2013. Т. 16. N 10. С. 257–265.
  6. Коптенармусов В.Б, Катков А.Л. Малов Е.И., Занозина И.И., Матвеева А.И., Цветков В.С.. Новые катализаторы для безводородной переработки тяжелых нефтяных остатков // Нефтепереработка и нефтехимия. Научно- технические достижения и передовой опыт. 2019. N 3. С. 14–21.
  7. Яковлев А.А. Коптенармусов В.Б. Эффективность применения технологии низкотемпературного каталитического термокрекинга нефтяных остатков на действующих установках висбрекинга // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2018. N 4. С. 8–10.
  8. Du H., Li M., Liu D., Ren Y., Duan Y. Slurry-phase hydrocracking of heavy oil and model reactant: effect of dispersed Mo catalyst // Applied Petrochemical Research. 2015. Vol. 5. P. 89–98. https://10.1007/s13203-014-0092-8
  9. Liu D., Guo A., Ma K., Que G. Investigation on dispersed catalyst for slurry bed hydroprocessing of heavy oil // China Petroleum Processing and Petrochemical Technology. 2006. Vol. 4. P. 55–59.
  10. Камешков А.В., Федоров В.И., Семикин К.В. Влияние режима гидродепарафинизации на низкотемпературные свойства дизельной фракции // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2016. N 4. С. 3–7.
  11. Овчарова А.С., Князева Е.Е., Савенкова И.В., Овчаров С.Н. Безводородная депарафинизация дизельных фракций на цеолитсодержащих катализаторах типа бета // Вестник Северо-Кавказского федерального университета. 2013. N 2 (35). С. 42–46.
  12. Синюта В.Р., Орловская Н.Ф. Производство арктических дизельных топлив // Нефтепереработка и нефтехимия. Научнотехнические достижения и передовой опыт. 2017. N 9. С. 16–18.
  13. Пат. № 2261266, Российская Федерация; МПК C 10 G 11/05. Способ получения дизельного топлива / О.В. Кихтянин, Г.В. Ечевский, Е.Г. Коденев, С.П. Кильдяшев, Д.Г. Аксенов, О.В. Климов; N 2004109994/4: заявл. 01.04.2004: опубл. 27.09.2005.
  14. Пат. № 2648046, Российская Федерация; МПК B01J29/40 (2006.01), C10G 11/05 (2006.01). Цеолитный катализатор и способ безводородной депарафинизации углеводородного сырья с его использованием / А.Б. Пономарёв, М.В. Шостаковский, В.Е. Вахмистров, С.К. Моисеев, А.П. Косолапова, В.Н. Писаренко; патентообладатель: ФГБУН Институт элементоорганических соединений им. А.Н. Несмеянова РАН. N 2017107255: заявл. 06.03.2017: опубл. 22.03.2018.
  15. Улзий Б., Барбашин Я.Е., Короткова Э.Ф., Вагин А.И., Восмериков А.В. Получение моторных топлив из высокопарафинистой нефти в присутствии цеолитсодержащего катализатора // Нефтепереработка и нефтехимия. Научные достижения и передовой опыт. 2011. N 11. С. 11–15.
  16. Van De Graaf J.M., Hoek A., De Jonge J.P., Kijlstra W.S., Maria Roovers A.A., Anne Sietsma J.R., Robert Van Veen J.A. Process for Process for conversion of paraffinic feedstock. Patent United States, no. US 2011/0139678 A1; 2011.
  17. Degnan T.F. Applications of zeolites in petroleum refining // Topics in Catalysis. 2000. Vol. 13. Issue 14. P. 349–356. https://doi.org/10.1023/A:1009054905137
  18. Fujikawa T. Catalysts for ultra deep desulfurization of diesel fractions // Fuel and Energy Abstracts. 2002. Vol. 44. Issue 5. P. 345–349. https://doi.org/10.1016/S0140-6701(03)82787-X
  19. GhashghaeeM., Shirvani S., Kegnæs S. Steam catalytic cracking of fuel oil over a novel composite nanocatalyst: Characterization, kinetics and comparative perspective // Journal of Analytical and Applied Pyrolysis. 2019. Vol. 138. P. 281–293. https://doi.org/10.1016/j.jaap.2019.01.010

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).