Possibilities of using information resources In bioremediation
- Authors: Babynin E.V.1,2, Degtyareva I.A.1,3
-
Affiliations:
- Kazan Federal University
- Tatar Research Institute of Agrochemistry and Soil Science
- Kazan National Research Technological University
- Issue: Vol 11, No 3 (2021)
- Pages: 372-383
- Section: Physico-chemical biology
- URL: https://ogarev-online.ru/2227-2925/article/view/301098
- DOI: https://doi.org/10.21285/2227-2925-2021-11-3-372-383
- ID: 301098
Cite item
Full Text
Abstract
About the authors
E. V. Babynin
Kazan Federal University; Tatar Research Institute of Agrochemistry and Soil Science
Email: edward.b67@mail.ru
I. A. Degtyareva
Kazan Federal University; Kazan National Research Technological University
Email: peace-1963@mail.ru
References
- Ellis L.B.M., Roe D., Wackett L.P. Biodegradation Database: the first decade // Nucleic Acids Research. 2006. Vol. 34. P. D517–D521. https://doi.org/10.1093/nar/gkj076
- Arora P.K., Shi W. Tools of bioinformatics in biodegradation // Reviews in Environmental Science and Biotechnology. 2010. Vol. 9. P. 211–213. https: //doi.org/10.1007/s11157-010-9211-x
- Gao J., Ellis L.B.M., Wackett L.P. The university of Minnesota biocatalysis/biodegradation database: improving public access // Nucleic Acids Research. 2010. Vol. 38. P. D488-D491. https://doi.org/10.1093/nar/gkp771
- Дегтярева И.А., Яппаров И.А., Яппаров А.Х., Ежкова А.М., Давлетшина А.Я., Шайдуллина И.А. Создание и применение биоудобрения на основе эффективного консорциума микроорганизмов-деструкторов углеводородов для рекультивации нефтезагрязненных почв Республики Татарстан // Нефтяное хозяйство. 2017. N 5. С.100–103. https://doi.org/10.24887/0028-2448-2017-5-100-103
- Costa A.S., Romão L.P.C., Araújo B.R., Lucas S.C.O., Maciel S.T.A., Wisniewski A. Jr., et al. Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass // Bioresource Technology. 2012. Vol. 105. P. 31–39. https://doi.org/10.1016/j.biortech.2011.11.096
- Chandra S., Sharma R., Singh K., Sharma A. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon // Annals of Microbiology. 2013. Vol. 63. Issue 2. P. 417–431. https://doi.org/10.1007/s13213-012-0543-3
- Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P. Biosurfactant-enhanced hydrocarbon bioremediation: an overview // International Biodeterioration & Biodegradation. 2014. Vol. 89. P. 88–94. https://doi.org/10.1016/j.ibiod.2014.01.007
- Шайдуллина И.А., Яппаров А.Х., Дегтярева И.А., Латыпова В.З., Гадиева Э.Ш. Рекультивация нефтезагрязненных почв на примере выщелоченных черноземов Татарстана // Нефтяное хозяйство. 2015. N 3. С. 102–105.
- Дегтярева И.А., Бабынин Э.В., Мотина Т.Ю., Султанов М.И. Полногеномное секвенирование штамма Staphylococcus warneri, изолированного из загрязненной нефтью почвы // Известия вузов. Прикладная химия и биотехнология, 2020. Т. 10. N 1. С. 48–55.
- Abatenh E., Gizaw B., Tsegaye Z., Wassie M. The role of microorganisms in bioremediation // Open Journal of Environmental Biology. 2017. Vol. 1. Issue 1. P. 038–046. https://doi.org/10.17352/ojeb.000007
- Bhandari S., Poudel D.K., Marahatha R., Dawadi S., Khadayat K., Phuyal S., et al. Microbial enzymes used in bioremediation // Journal of Chemistry. 2021. Vol. 2021. Issue 4. Article ID 8849512. 17 p. https://doi.org/10.1155/2021/8849512
- Abou Seeda M.A., Yassen A.A., Abou El-Nour E.Z.A.A. Microorganism as a tool of bioremediation technology for cleaning waste and industrial water // Bioscience Research. 2017. Vol. 14. Issue 3. P. 633–644.
- Dave S., Das J. Role of microbial enzymes for biodegradation and bioremediation of environmental pollutants: challenges and future prospects. In: Bioremediation for Environmental Sustainability. Saxena G., Kumar V., Shah M.P. (eds.) Elsevier, 2021. P. 325–346. https://doi.org/10.1016/B978-0-12-820524-2.00013-4
- Singh P., Jain R., Srivastava N., Borthakur A., Pal D.B., Singh R., et al. Current and emerging trends in bioremediation of petrochemical waste: a review // Critical Reviews in Environmental Science and Technology. 2017. Vol. 47. Issue 3. P. 155–201. https://doi.org/10.1080/10643389.2017.1318616
- Ghaly A.E., Yusran A., Dave D. Effects of biostimulation and bioaugmentation on the degradation of pyrene in soil // Journal of Bioremediation & Biodegradation. 2013. S7:005. 13 p. https://doi.org/10.4172/2155-6199.S7-005
- Koshlaf E., Ball A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments // AIMS Microbiology. 2017. Vol. 3. Issue 1. P. 25–49. https://doi.org/10.3934/microbiol.2017.1.25
- Dvořák P., Nikel P.I., Damborský J., de Lorenzo V. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology // Biotechnology Advances. 2017. Vol. 35. Issue 7. P. 845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001
- Chandran H., Meena M., Sharma K. Microbial biodiversity and bioremediation assessment through omics approaches // Frontiers Environmental Chemistry. 2020. Vol. 1. P. 570326. https://doi.org/10.3389/fenvc.2020.570326
- Jesmok E.M., Hopkins J.M., Foran D.R. Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: a feasibility study // Journal Forensic Sciences. 2016. Vol. 61. Issue 3. P. 607–617. https://doi.org/10.1111/1556-4029.13049
- Rahmeh R., Akbar A., Kumar V., Al-Mansour H., Kishk M., Ahmed N., et al. Insights into bacterial community involved in bioremediation of aged oilcontaminated soil in arid environment // Evolutionary Bioinformatics Online. 2021. Vol. 17. 13 p. https://doi.org/10.1177/11769343211016887
- Misra B.B., Langefeld C.D., Olivier M., Cox L.A. Integrated omics: tools, advances, and future approaches // Journal of Molecular Endocrinology. 2018. Vo. 62. Issue 1. P. R21–R45. https://doi.org/10.1530/JME-18-0055
- Pandey A., Tripathi P.H., Tripathi A.H., Pandey S.C., Gangola S. Omics technology to study bioremediation and respective enzymes. In: Smart bioremediation technologies. Microbial enzymes. Bhatt P. (ed.). New Delhi: Academic Press, 2019. P. 23–43. https://doi.org/10.1016/B978-0-12-818307-6.00002-0
- Singh A.K., Bilal M., Iqbal H.M.N., Raj A. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: recent progress and future outlook // Science of The Total Environment. 2021. Vol. 770. P. 144561. https://doi.org/10.1016/j.scitotenv.2020.144561
- Goh H.-H. Integrative multi-omics through bioinformatics. // Advances in Experimental Medicine and Biology. 2018. Vol. 1102. P. 69–80. https:// doi.org/10.1007/978-3-319-98758-3_5
- Ejigu G.F., Jung J. Review on the computational genome annotation of sequences obtained by nextgeneration sequencing // Biology. 2020. Vol. 9. Issue 9. P. 295. https://doi.org/10.3390/biology9090295
- Zhang P., Berardini T.Z., Ebert D., Li Q., Mi H., Muruganujan A., et al. PhyloGenes: An online phylogenetics and functional genomics resource for plant gene function inference // Plant Direct. 2020. Vol. 4. Issue 12. P. e00293. https://doi.org/10.1002/pld3.293
- Tong H., Phan N.V.T., Nguyen T.T., Nguyen D.V., Vo N.S., Le L. Review on databases and bioinformatic approaches on pharmacogenomics of adverse drug reactions // Pharmacogenomics and Personalized Medicine. 2021. Vol. 14. P. 61–75. https://doi.org/10.2147/PGPM.S290781
- Caspi R., Altman T., Billington R., Dreher K., Foerster H., Fulcher C.A., et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases // Nucleic Acids Research. 2012. Vol. 42 (Database issue). P. D459–D471. https://doi.org/10.1093/nar/gkt1103
- Mohan C.G., Gandhi T., Garg D., Shinde R. Computer-assisted methods in chemical toxicity prediction // Mini-Reviews in Medicinal Chemistry. 2007. Vol. 7. Issue 5. P. 499–507. https://doi.org/10.2174/138955707780619554
- Chou C.H., Chang W.C., Chiu С.С., Huang С.С., Huang H.D. FMM: a web server for metabolic pathway reconstruction and comparative analysis // Nucleic Acids Research. 2009. Vol. 37. P. W129–W134. https://doi.org/10.1093/nar/gkp264
- Finley S.D., Broadbelt L.J., Hatzimanikatis V. Computational framework for predictive biodegradation // Biotechnology and Bioengineering. 2009. Vol. 104. Issue 6. P. 1086–1097. https://doi.org/10.1002/bit.22489
- Moriya Y., Shigemizu D., Hattori M., Tokimatsu T., Kotera M., Goto S., et al. PathPred: an enzyme-catalyzed metabolic pathway prediction server // Nucleic Acids Research. 2010. Vol. 38. P.W138–W143. https://doi.org/10.1093/nar/gkq318
- Gao J., Ellis L.B.M., Wackett L.P. The University of Minnesota pathway prediction system: multi-level prediction and visualization // Nucleic Acids Research. 2011. Vol. 39. (Web Server issue). P. W406–W411. https://doi.org/10.1093/nar/gkr200
- Kotera M., Goto S. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis // Biophysics & Physicobiology. 2016. Vol. 13. P. 195–205. https://doi.org/10.2142/biophysico.13.0_195
- Shah H.A., Liu J., Yang Z., Feng J. Review of machine learning methods for the prediction and reconstruction of metabolic pathways // Frontiers in Molecular Biosciences. 2021. Vol. 8. P. 634141. https://doi.org/10.3389/fmolb.2021.634141
- Wang L., Dash S., Ng C.Y., Maranas C.D. A review of computational tools for design and reconstruction of metabolic pathways // Synthetic and Systems Biotechnology. 2017. Vol. 2. Issue 4. P. 243–252. https://doi.org/10.1016/j.synbio.2017.11.002
- Wackett L.P. The Metabolic Pathways of Biodegradation. In: The prokaryotes. Applied Bacteriology and Biotechnology. 4th edition. Rosenberg E. (editor-in-chief); DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds.). Springer, Berlin, Heidelberg. 2013. P. 383–393. https://doi.org/10.1007/978-3-642-31331-8_76
- Dombrowski N., Donaho J.A., Gutierrez T., Seitz K.W., Teske A.P., Baker B.J. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill // Nature Microbiology. 2016. Vol. 1. Issue 7. Article number 16057. https://doi.org/10.1038/nmicrobiol.2016.57
- Jaiswal S., Shukla P. Alternative strategies for microbial remediation of pollutants via synthetic biology // Frontiers in Microbiology. 2020. Vol. 11. P. 808. https://doi.org/10.3389/fmicb.2020.00808
- Henry C.S., DeJongh M., Best A.A., Frybarger P.M., Linsay B., Steven R.L. Highthroughput generation, optimization and analysis of genome-scale metabolic models // Nature Biotechnology. 2010. Vol. 28. P. 977–982. https://doi.org/10.1038/nbt.1672
- Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs // Nucleic Acids Research. 2017. Vol. 45. Issue D1. P. D353–D361. https://doi.org/10.1093/nar/gkw1092
- Caspi R., Billington R., Ferrer L., Foerster H., Fulcher C.A., Keseler I.M., et al.The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases // Nucleic Acids Research. 2016. Vol. 44. Issue D1. P. D471–D480. https://doi.org/10.1093/nar/gkv1164
- Rentzsch R., Orengo C.A. Protein function prediction – the power of multiplicity // Trends in Biotechnology. 2009. Vol. 27. Issue 4. P. 210–219. https://doi.org/10.1016/j.tibtech.2009.01.002
- Calderón-González K.G., Hernández-Monge J., Herrera-Aguirre M.E., Luna-Arias J.P. Bioinformatics tools for proteomics data interpretation // Advances in Experimental Medicine and Biology. 2016. Vol. 919. P. 3281–341. https://doi.org/10.1007/978-3-319-41448-5_16
- Oliveira J.S., Araújo W., Lopes Sales A.I., de Brito Guerra A., da Silva Araújo S.C., de Vasconcelos A.T.R., et al. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. // Database. The Journal of Biology Databases and Curation. 2015. Vol. 2015. bav 033. https://doi.org/10.1093/database/bav033
- Medema M.H., van Raaphorst R., Takano E., Breitling R. Computational tools for the synthetic design of biochemical pathways R // Nature Reviews Microbiology. 2012. Vol. 10. Issue 3. P. 191–202. https://doi.org/10.1038/nrmicro2717
- Hadadi N., Hatzimanikatis V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways // Current Opinion in Chemical Biology. 2015. Vol. 28. P. 99–104. https://doi.org/10.1016/j.cbpa.2015.06.025
- Langowski J., Long A. Computer systems for the prediction of xenobiotic metabolism // Advanced Drug Delivery Reviews. 2002. Vol. 54. Issue 3. P. 407–415. https://doi.org/10.1016/s0169-409x(02)00011-x
- Wicker J., Lorsbach T., Gütlein M., Schmid E., Latino D., Kramer S., et al. EnviPath – the environmental contaminant biotransformation pathway resource // Nucleic Acids Research. 2016. Vol. 44. Issue D1. P. D502–D508. https://doi.org/10.1093/nar/gkv1229
- Pazos F., Guijas D., Valencia A., de Lorenzo V. MetaRouter: bioinformatics for bioremediation // Nucleic Acids Research. 2005. Vol. 33. P. D588–D592. https://doi.org/10.1093/nar/gki068
Supplementary files
