Impedance spectroscopy study of anticorrosive properties of epoxy compositions

Cover Page

Cite item

Full Text

Abstract

Although metals and their alloys are important structural materials, electrochemical or chemical interactions between metal structures and the environment leads to their spontaneous destruction. In order to protect metal products from corrosion, epoxy resins and polymer composite materials can be applied. However, polymer-coated metals may degrade under operating conditions due to electrochemical reactions at the polymer-metal interface caused by water absorption and diffusion in epoxy coatings. The present study is aimed at an investigation of the anticorrosive behaviour characteristic of epoxy compositions following exposure to sulphuric acid. The method of impedance spectroscopy was applied to evaluate epoxy coatings on a steel base. The composition of the epoxy binder included bisphenol A resins cured with various amine curing agents. In order to identify structural changes in materials, as well as the changes in their protective properties, the effects of an aggressive environment were simulated by means of exposure to concentrated sulphuric acid over a 30-day period. Impedance hodographs of the studied systems were obtained and equivalent schemes for the approximation of experimental data proposed. The high porosity of the NPEK-114L based epoxy system was established to result in an increase in the corrosion rate. Dissolution of corrosion products over a longer test period – and consequent higher diffusion of corrosive ions in the coating – was determined to cause a decrease in corrosion resistance. Epoxy compositions based on NPEL-128 resin (oligomeric product based on diphenylolpropane diglycidyl ether) demonstrated improved anticorrosion characteristics. The addition of alkyl glycidyl ether for NPEK-114L resin viscosity reduction was shown to affect the protective properties of the composite under acid exposure.

About the authors

I. V. Polynskii

Irkutsk National Research Technical University

Email: polinigor@yandex.ru

V. V. Mironenko

Irkutsk National Research Technical University

Email: mironenko_vv@istu.edu

M. M. Polynskaya

Irkutsk State Transport University

Email: marypo1976@yandex.ru

E. A. Antsiferov

Irkutsk National Research Technical University

Email: antsiferov@istu.edu

References

  1. Dagdag O., Galai M., Touhami M. Ebn, Essamri A., Elрarfi A. Electrochemical study of the polymer behavior of an epoxy coating on carbon steel in 3 % NaCl using polarization curves and SIE // Journal of Materials and Environmental Science. 2016. Vol. 7. Issue 9. P. 3454–3464.
  2. Xuan H.T.T., Truc T.A., Olivier M.-G., Vandermiers C., Guérit N., Pébère N. Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay // Progress in Organic Coatings. 2010. Vol. 69. Issue 4. P. 410–416. htts://doi.org/10.1016/j.porgcoat.2010.08.004
  3. Azadi M., Bahrololoom M.E., Olya M.J. EIS Study of Epoxy Paints in Corrosive Environments with a New Filler: Rice Husk Ash // Progress in Color, Colorants and Coatings. 2016. Vol. 9. Issue 1. P. 53–60.
  4. Volmajer N.K., Steinbücher M., Berce P., Venturini P., Gaberšček M. Electrochemical Impedance Spectroscopy Study of Waterborne Epoxy Coating Film Formation // Coatings. 2019. Vol. 9. Issue 4. P. 254. htts://doi.org/10.3390/coatings9040254
  5. Kharitonov D.S., Kurilo I.I., Zharskii I.M. Effect of sodium vanadate on corrosion of AD31 aluminum alloy in acid media // Russian Journal of Applied Chemistry. 2017. Vol. 90. Issue 7. P. 1089–1097. https://doi.org/10.1134/S1070427217070102
  6. Журавлёва А.С., Петрова О.Д., Кузьмин М.П., Кузьмина М.Ю. Влияние условий электрохимического оксидирования на морфологию и устойчивость анодных пленок ZnO // Вестник Иркутского государственного технического университета. 2016. N 1 (108). С. 107–115.
  7. Xing X., Xu X., Wang J., Hu W. Preparation and inhibition behavior of ZnMoO4/reduced graphene oxide composite for Q235 steel in NaCl solution // Applied Surface Science. 2019. Vol. 479. P. 835–846. https://doi.org/10.1016/j.apsusc.2019.02.149
  8. Rodriguez-Gomez F.J., Valdelamar M.P., Vazquez A.E., Del Valle Perez P., Mata R., Miralrio A., et al. Mycophenolic acid as a corrosion inhibitor of carbon steel in 3 % wt. NaCl solution. An experimental and theoretical study // Journal of Molecular Structure. 2019. Vol. 1183. P. 168–181. https://doi.org/10.1016/j.molstruc.2018.12.035
  9. Bhaskaran, Pancharatna P.D., Lata S., Singh G. Imidazolium based ionic liquid as an efficient and green corrosion constraint for mild steel at acidic pH levels // Journal of Molecular Liquids. 2019. Vol. 278. P. 467–476. https://doi.org/10.1016/j.molliq.2019.01.068
  10. Bambara G., Lunazzi G.C., Martini В. Electrochemische Aspekte des Versagens von organischen Uberzugen // Werkstoffe und Korrosion. 1982. Bd. 33. N 11. S. 610–617.
  11. Томашов Н.Д., Чернова Г.П. Теория коррозии и коррозионностойкие конструкционные материалы. М.: Металлургия, 1986. 359 с.
  12. Осипов П.В., Осипчик В.С., Смотрова С.А. Регулирование свойств эпоксидных олигомеров // Успехи в химии и химической технологии. 2008. Т. 22. N 5 (85). С. 53–56.
  13. Barsoukov E., MacDonald JR. Impedance Spectroscopy Theory, Experiment, and Applications Second Edition. Hoboken, New Jersey: John Wiley & Sons Interscience, 2005. 595 p. https://doi.org/10.1002/jrs.1558
  14. Стройнов З.Б., Графов Б.М., Саввова-Стройнова Б., Елкин В.В. Электрохимический импеданс. М.: Наука, 1991. 33 с.
  15. Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. Hoboken, New Jersey: John Wiley & Sons Interscience, 2008. 523 p. https://doi.org/10.1002/9780470381588
  16. Залесова О.Л., Ярославцева О.В., Соловьев А.С., Рудой В.М. Использование импедансной спектроскопии для определения влияния объемной концентрации пигмента на структурные свойства эпоксидного покрытия // Вестник Казанского технологического университета. 2014. Т. 17. N 14. С. 136–139.
  17. Котлярова И.А., Степина И.В., Илюшкин Д.А., Цветков И.С. Оценка влияния полярности дисперсных наполнителей на структуру и водопоглощение эпоксидных материалов // Вестник МГСУ. Научно-технический журнал по строительству и архитектуре. 2019. Т. 14. N 6. С. 690–699. https://doi.org/10.22227/1997-0935.2019.6.690-699
  18. Gong W., Yin X., Liu Y., Chen Y., Yang W. 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium // Progress in Organic Coatings. 2019. Vol. 126. P. 150–161. https://doi.org/10.1016/j.porg-coat.2018.10.001
  19. Mazumder M.A.J. Synthesis, characterization and electrochemical analysis of cysteine modified polymers for corrosion inhibition of mild steel in aqueous 1M HCl // RSC Advances. 2019. Vol. 9. Issue 8. P. 4277–4294. https://doi,org/10.1039/C8RA09833

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».