Анализ инновационно-инвестиционной сбалансированности промышленной политики России в условиях цифровой трансформации с применением методов искусственного интеллекта

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Целью статьи является анализ инновационно-инвестиционной сбалансированности промышленной политики как императива развития промышленности в условиях цифровой трансформации экономики. В исследовании решается проблема совершенствования инструментария оценки эффектов промышленной политики, в части реализации принципа инновационно-инвестиционной сбалансированности. Для проведения исследования предложен метод комплексного анализа гетерогенных статистических данных, заключающийся в проведении кластеризации данных на базе нейронных сетей – важного раздела искусственного интеллекта. Нейросетевое моделирование с использованием самоорганизующихся карт Кохонена, объектированных на платформе аналитического пакета Deductor, применялось, так как оно свободно от модельной ограниченности и внешнего вмешательства в процедуру функционирования нейронной сети. Разработана система показателей, сгруппированных по 4 секторам, определяющим сбалансированное инновационно-инвестиционное развитие промышленной политики с учетом интересов важнейших групп стейкхолдеров в условиях цифровой трансформации. Это позволило дать его комплексную оценку. Систематизированы особенности инновационно-инвестиционного развития субъектов РФ. Выявлено сильное различие регионов РФ по уровню инновационно-инвестиционной сбалансированности промышленной политики, а также основные диспропорции в условиях цифровой трансформации экономики. Статья может быть интересна специалистам, занимающимся проблемами разработки и реализации программных документов промышленного развития на региональном и федеральном уровнях

Об авторах

Владислав Генрихович Фролов

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: frolov.unn@gmail.com
Доцент кафедры экономики предприятий и организаций, кандидат экономических наук, доцент

Валентина Ивановна Перова

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: perova_vi@mail.ru
Доцент кафедры математического моделирования экономических процессов,кандидат физико-математических наук, доцент

Список литературы

  1. 1. Акбердина В.В., Романова О.А. Региональные аспекты индустриального развития: обзор подходов к формированию приоритетов и механизмов регулирования // Экономика региона. – 2021. – № 3. – c. 714-736. – doi: 10.17059/ekon.reg.2021-3-1.
  2. 2. Алескеров Ф.Т., Гохберг Л.М., Егорова Л.Г., Мячин А.Л., Сагиева Г.С. Анализ данных науки, образования и инновационной деятельности с использованием методов анализа паттернов: препринт WP7/2012/07. / Нац. исслед. ун-т «Высшая школа экономики». - М.: Изд. дом Высшей школы экономики, 2012.
  3. 3. Балабанов А.С., Стронгина Н.Р. Анализ данных в экономических приложениях. - Нижний Новгород: Изд-во ННГУ, 2004.
  4. 4. Ведута Н.И. Социально эффективная экономика. - М.: РЭА, 1999.
  5. 5. Гончаров А.Ю. Структурное управление развитием региона. / Под ред. проф. Н.В. Сироткиной. - Воронеж: Издательство ВГПУ «Новопресс», 2016.
  6. 6. Киселева О.Н. Формирование сбалансированной стратегии инновационного развития предприятий России на основе организационно-управленческнх инноваций // Инновации и инвестиции. – 2017. – № 12. – c. 279-283.
  7. 7. Клейнер Г.Б., Рыбачук М.А. Системная сбалансированность экономики России: региональный разрез // Экономика региона. – 2019. – № 2. – c. 309-323.
  8. 8. Колганов А.И. Структура российской экономики: потенциал адаптации цифровых технологий. / Ломоносовские чтения-2018. Секция экономических наук. Цифровая экономика: человек, технологии, институты: сборник статей. - М.: Экономический факультет МГУ имени М. В. Ломоносова, 2018. – 150-157 c.
  9. 9. Кузнецов Б.В., Симачев Б.В. Эволюция государственной промышленной политики в России // Журнал новой экономической ассоциации. – 2014. – № 2. – c. 152-178.
  10. 10. Лаврикова Ю.Г., Андреева Е.Л., Тарасов А.Г., Ратнер А.В. Влияние глобальных экономических вызовов на развитие рынков будущего // Экономика и управление. – 2019. – № 9. – c. 34-42. – doi: 10.35854/1998-1627-2019-9-34-42.
  11. 11. Леонтьев В.В. Избранные произведения. / В 3-х томах. Том 2. Специальные исследования на основе методологии «Затраты - выпуск». - М.: Экономика, 2006.
  12. 12. Летягина Е.Н., Перова В.И. Нейросетевое моделирование региональных инновационных экосистем // Journal of New Economy. – 2021. – № 1. – c. 71-89. – doi: 10.29141/2658-5081-2021-22-1-4.
  13. 13. Перова В.И., Зайцева К.В. Исследование динамики инновационной деятельности регионов России с применением нейросетевого моделирования // Экономический анализ: теория и практика. – 2017. – № 16 (5). – c. 887-901.
  14. 14. Романова О.А., Пономарева А.О. Промышленная политика: новые реалии, проблемы формирования и реализации // Экономические и социальные перемены: факты, тенденции, прогноз. – 2020. – № 2. – c. 25-40. – doi: 10.15838/esc.2020.2.68.2.
  15. 15. Григорьева Л.М., Зубаревич Н.В., Хасаева Г.Р. Российские регионы: экономический кризис и проблемы модернизации. - М.: ТЕИС, 2011.
  16. 16. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. - М.: Горячая линия – Телеком, 2008.
  17. 17. Симачев Ю.В., Кузык М.Г., Кузнецов Б.В., Погребняк Е.В. Россия на пути к новой технологической промышленной политике: среди манящих перспектив и фатальных ловушек // Форсайт. – 2014. – № 4. – c. 6-23.
  18. 18. Татаркин А.И., Романова О.А. Промышленная политика и механизм ее реализации. Системный подход // Экономика региона. – 2007. – № 3. – c. 19-31.
  19. 19. Татаркин А.И., Сухарев О.С., Стрижакова Е.Н. Шумпетерианская экономическая теория промышленной политики: влияние технологической структуры // Журнал экономической теории. – 2017. – № 2. – c. 7-17.
  20. 20. Тебекин А.В., Анастасов М.С. Анализ подходов сбалансированного развития экономических систем // Транспортное дело россии. – 2016. – № 5. – c. 80-85.
  21. 21. Фролов В.Г. Инновационно-инвестиционно сбалансированная промышленная политика в условиях цифровой трансформации. - М.: Первое экономическое издательство, 2021. – 240 c.
  22. 22. Фролов В.Г. Промышленная политика как интегрированный комплекс развития инновационно-активного предпринимательства производственной сферы // Креативная экономика. – 2013. – № 11 (83). – c. 59-62.
  23. 23. Сенчагов В.К. Экономическая безопасность России. / Обший курс: учебник. - М.: Лаборатория знаний, 2020.
  24. 24. Aleskerov, F.T., Gokhberg, L.M, Egorova, L,G., Myachin, A.L., and Sagieva, G.S. (2014). A Method of Static and Dynamic Pattern Analysis of Innovative Development of Russian Regions in the Long Run, in: Springer Proceedings in Mathematics and Statistics. Volume 104 Models, Algorithms and Technologies for Network Analysis. Dordrecht, L., Cham, Heidelberg, NY: Springer, Ch. 1, 1-8. doi: 10.1007/978-3-319-09758-9_1
  25. 25. Andreoni A., Chang Ha-Joon. The political economy of industrial policy: Structural interdependencies, policy alignment and conflict management // Structural Change and Economic Dynamics. – 2019. – № 48. – p. 136-150.
  26. 26. Binh D.Th.Th., Anh T.Th.K. Stakeholders approach on corporate governance and performance of Vietnamese manufacturing firms // Journal of Governance and Regulation. – 2017. – № 6 (2). – p. 61-73.
  27. 27. Carboni O.A., Russu P. Assessing regional wellbeing in Italy: An application of Malmquist–DEA and self-organizing map neural clustering // Social Indicators Research. – 2015. – № 122 (3). – p. 677-700.
  28. 28. Di Tollo, G., Tanev, S., Slim, K.M., and De March, D. (2014). Determining the Relationship Between Cocreation and Innovation by Neural Networks // Complexity in Economics: Cutting Edge Research, 49-62. URL: http://link.springer.com/chapter/10.1007/978-3-319-05185-7_3
  29. 29. Gruber H. Proposals for a digital industrial policy for Europe // Telecommunications Policy. – 2019. – № 43 (2). – p. 116-127.
  30. 30. Kohonen Т. Self-Organized Formation of Topologically Correct Feature Maps // Bio1ogical Cybernetics. – 1982. – № 43 (1). – p. 59-69. – doi: 10.1007/BF00337288.
  31. 31. Kraufman L., Rousseeuw P. Finding groups in data: An introduction to cluster analysis. / Hoboken. - NJ: John Wiley Sons, Inc, 2005.
  32. 32. Martinetz T.M., Berkovich S.G., Schulten K.J. “Neural-Gas” Network for Vector Quantization and Its Application to Time-Series Prediction // IEEE Transactions on Neural Networks. – 1993. – № 4 (4). – p. 558-569.
  33. 33. Mhlanga D., Moloi T. The stakeholder theory in the fourth industrial revolution // International Journal of economics and finance studies. – 2020. – № 12 (2). – p. 252-268.
  34. 34. Padmashree, G.S. (2018). Regulating the digital economy: Are we moving towards a 'win‐win' or a 'lose‐lose'? – Maastricht Economic and social Research institute on Innovation and Technology (UNU‐MERIT) [Electronic source] file: //C:/Users/nnd_apavlo/Downloads/wp2018-005.pdf) (data access: 08.10.2022)
  35. 35. Rhodes, С., and Rathbone, D. (2016). Digital economy: statistics and policy. Number CBP 7610, 2 June [Electronic source] URL: https://www.legco.gov.hk/general/english/library/stay_informed_overseas_policy_updates/digital_economy.pdf) (data access: 08.10.2022)
  36. 36. Sinha S., Singh T.N., Singh V.K., Verma A.K. Epoch determination for neural network by self-organized map (SOM) // Computational Geosciences. – 2010. – № 14 (1). – p. 199-206. – doi: 10.1007/ s10596-009-9143-0.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Фролов В.Г., Перова В.И., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».