Перспективы использования miRNA-378 в качестве сердечно-сосудистого биологического маркера: обзор литературы
- Авторы: Алиева А.М.1, Хаджиева Н.Х.2, Байкова И.Е.2, Рахаев А.М.3, Котикова И.А.3, Никитин И.Г.3
-
Учреждения:
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
- Клиника генетики ДНК «МедЭстет»
- Кабардино-Балкарский государственный университет им. Х.М. Бербекова
- Выпуск: Том 15, № 3 (2024)
- Страницы: 221-230
- Раздел: Обзоры
- URL: https://ogarev-online.ru/2221-7185/article/view/281612
- DOI: https://doi.org/10.17816/CS632226
- ID: 281612
Цитировать
Полный текст
Аннотация
В настоящее время ведётся активный поиск новых биологических маркеров и терапевтических мишеней с целью разработки эффективных подходов к стратификации риска и вторичной профилактике сердечно-сосудистых заболеваний (ССЗ). Особый интерес исследователей привлекают микрорибонуклеиновые кислоты (miRNAs). MiRNAs относятся к классу эндогенных малых некодирующих RNA. MiRNAs регулируют транскрипцию важных участников процессов пролиферации, дифференцировки, клеточного роста и тканевого ремоделирования при ССЗ. В настоящее время miRNA-378 анализируется в роли биологического маркера ССЗ. В представленной статье описана регуляторная роль miRNA-378 и приведены весомые доказательства целесообразности использования её в качестве биомаркера. Требуются дальнейшие доклинические и клинические исследования для выявления потенциальных преимуществ использования miRNA-378 в качестве биологического маркера при ССЗ.
Полный текст
Открыть статью на сайте журналаОб авторах
Амина Магомедовна Алиева
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Автор, ответственный за переписку.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-код: 2749-6427
канд. мед. наук, доцент
Россия, 117997, г. Москва, ул. Островитянова, д. 1Нюржанна Хусейновна Хаджиева
Клиника генетики ДНК «МедЭстет»
Email: nurzhanna@yandex.ru
ORCID iD: 0000-0002-5520-281X
SPIN-код: 2520-8520
канд. мед. наук
Россия, МоскваИрина Евгеньевна Байкова
Клиника генетики ДНК «МедЭстет»
Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-код: 3054-8884
канд. мед. наук, доцент
Россия, МоскваАлик Магомедович Рахаев
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174
SPIN-код: 5166-8100
доктор мед. наук, профессор
Россия, НальчикИрина Александровна Котикова
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-код: 1423-7300
ординатор
Россия, НальчикИгорь Геннадиевич Никитин
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-код: 3595-1990
доктор мед. наук, профессор
Россия, НальчикСписок литературы
- Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapija. 2022;(1):60–70. doi: 10.18565/therapy.2022.1.60-70
- Li X, Han Y, Meng Y, et al. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol. 2024;21(1):1–20. doi: 10.1080/15476286.2023.2293343
- Searles CD. MicroRNAs and Cardiovascular Disease Risk. Curr Cardiol Rep. 2024;26(2):51–60. doi: 10.1007/s11886-023-02014-1
- Yan J, Zhong X, Zhao Y, et al. Role and mechanism of miRNA in cardiac microvascular endothelial cells in cardiovascular diseases. Front Cardiovasc Med. 2024;11:1356152. doi: 10.3389/fcvm.2024.1356152
- Cao Y, Zheng M, Sewani MA, et al. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res. 2024;116(1):e2273. doi: 10.1002/bdr2.2273
- Alieva AM, Reznik EV, Teplova NV, et al. MicroRNA-34a in cardiovascular disease: a glimpse into the future. Russian Cardiology Bulletin. 2023;18(1):14–22. doi: 10.17116/Cardiobulletin20231801114
- Wang H, Shi J, Wang J, et al. MicroRNA-378: An important player in cardiovascular diseases (Review). Mol Med Rep. 2023;28(3):172. doi: 10.3892/mmr.2023.13059
- Alieva AM, Teplova NV, Reznik EV, et al. miRNA-122 as a new player in cardiovascular disease. Rossiiskii meditsinskii zhurnal. 2022;28(4):451–463. doi: 10.17816/medjrf111180
- Krist B, Florczyk U, Pietraszek-Gremplewicz K, et al. The Role of miR-378a in Metabolism, Angiogenesis, and Muscle Biology. Int J Endocrinol. 2015;2015:281756. doi: 10.1155/2015/281756
- Kuang Z, Wu J, Tan Y, et al. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules. 2023;13(3):568. doi: 10.3390/biom13030568
- Li Y, Jiang J, Liu W, et al. microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci U S A. 2018;115(46):E10849–E10858. doi: 10.1073/pnas.1803377115
- Camps C, Saini HK, Mole DR, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer. 2014;13:28. doi: 10.1186/1476-4598-13-28
- Zhang J, Ma J, Long K, et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci. 2017;18(4):711. doi: 10.3390/ijms18040711
- Xing Y, Hou J, Guo T, et al. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther. 2014;5(6):130. doi: 10.1186/scrt520
- Zhang H, Hao J, Sun X, et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 2018;27(3):336–342. doi: 10.1093/icvts/ivy058
- Templin C, Volkmann J, Emmert MY, et al. Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential microRNA-378 expression. Arterioscler Thromb Vasc Biol. 2017;37(2):341–349. doi: 10.1161/ATVBAHA.116.308695
- Chong H, Wei Z, Na M, et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis. 2020;297:136–145. doi: 10.1016/j.atherosclerosis.2020.02.001
- Chen W, Li X, Wang J, et al. miR-378a modulates macrophage phagocytosis and differentiation through targeting CD47-SIRPα axis in atherosclerosis. Scand J Immunol. 2019;90(1):e12766. doi: 10.1111/sji.12766
- Yuan W, Liang X, Liu Y, et al. Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI. Hypertens Res. 2022;45(4):650–664. doi: 10.1038/s41440-022-00851-1
- Zhou R, Jia Y, Wang Y, et al. Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res. 2021;13(4):2350–2364.
- Yan T, Li X, Nian T, et al. Salidroside inhibits ischemia/reperfusion-induced myocardial apoptosis by targeting mir-378a-3p via the IGF1R/PI3K/AKT signaling pathway. Transplant Proc. 2022;54(7):1970–1983. doi: 10.1016/j.transproceed.2022.05.017
- Ganesan J, Ramanujam D, Sassi Y, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation. 2013;127(21):2097–2106. doi: 10.1161/CIRCULATIONAHA.112.000882
- Chen YH, Zhong LF, Hong X, et al. Integrated Analysis of circRNA-miRNA-mRNA ceRNA Network in Cardiac Hypertrophy. Front Genet. 2022;13:781676. doi: 10.3389/fgene.2022.781676
- Sun F, Zhuang Y, Zhu H, et al. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. J Mol Cell Cardiol. 2019;133:188–198. doi: 10.1016/j.yjmcc.2019.06.011
- Wu L, Gao B, Shen M, et al. lncRNA LENGA sponges miR-378 to promote myocardial fibrosis in atrial fibrillation. Open Med (Wars). 2023;18(1):20230831. doi: 10.1515/med-2023-0831
- Florczyk-Soluch U, Polak K, Sabo R, et al. Compromised diabetic heart function is not affected by miR-378a upregulation upon hyperglycemia. Pharmacol Rep. 2023;75(6):1556–1570. doi: 10.1007/s43440-023-00535-8
- Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch Physiol Biochem. 2021;21:1–9. doi: 10.1080/13813455.2021.1985144
- Froldi G. View on metformin: Antidiabetic and pleiotropic effects, pharmacokinetics, side effects, and sex-related differences. Pharmaceuticals (Basel). 2024;17(4):478. doi: 10.3390/ph17040478
- Khokhar M, Roy D, Bajpai NK, et al. Metformin mediates microRNA-21 regulated circulating matrix metalloproteinase-9 in diabetic nephropathy: an in-silico and clinical study. Arch Physiol Biochem. 2023;129(6):1200–1210. doi: 10.1080/13813455.2021.1922457
- Machado IF, Teodoro JS, Castela AC, et al. miR-378a-3p participates in metformin's mechanism of action on C2C12 cells under hyperglycemia. Int J Mol Sci. 2021;22(2):541. doi: 10.3390/ijms22020541
- Chaulin AM. The essential strategies to mitigate cardiotoxicity caused by Doxorubicin. Life (Basel). 2023;13(11):2148. doi: 10.3390/life13112148
- Mattioli R, Ilari A, Colotti B, et al. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med. 2023;93:101205. doi: 10.1016/j.mam.2023.101205
- Wang Y, Zhang Q, Wei C, et al. MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin. Am J Transl Res. 2018;10(11):3600–3609.
- Wang Y, Cui X, Wang Y, et al. Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin. J Cell Physiol. 2018;233(10):6344–6351. doi: 10.1002/jcp.26615
- Zhang H, Hao J, Sun X, et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 2018;27(3):336–342. doi: 10.1093/icvts/ivy058
- Li H, Gao F, Wang X, et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease. Biosci Rep. 2019;39(5):BSR20182016. doi: 10.1042/BSR20182016
- Shen J, Chang C, Ma J, et al. Potential of circulating proangiogenic microRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology. 2021;146(3):400–408. doi: 10.1159/000509275
- Dai R, Liu Y, Zhou Y, et al. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. J Clin Lab Anal. 2020;34(1):e23013. doi: 10.1002/jcla.23013
- Chen Z, Li C, Xu Y, et al. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One. 2014;9(8):e105702. doi: 10.1371/journal.pone.0105702
- Begrambekova YuL, Karanadze NA, Plisyuk AG, et al. Comprehensive physical rehabilitation of patients with heart failure: impact on clinical and functional status and analysis of problems related to the enrollment. Russian Journal of Cardiology. 2022;27(2):4814. doi: 10.15829/1560-4071-2022-4814
- Pala M. Exercise and microrna. Georgian Med News. 2023;(345):146–153.
- Xu T, Zhou Q, Che L, et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget. 2016;7(11):12414–12425. doi: 10.18632/oncotarget.6966
Дополнительные файлы
