ФУНКЦИОНАЛЬНАЯ АКТИВНОСТЬ КЛЕТОК ВРОЖДЕННОГО ИММУНИТЕТА ПРИ БАКТЕРИАЛЬНОЙ ИНФЕКЦИИ НА ФОНЕ ТЕПЛОВОГО СТРЕССА

Обложка

Цитировать

Полный текст

Аннотация

Поддержание термогомеостаза обеспечивается интегративным взаимодействием различных систем организма, в том числе иммунной, при координирующем влиянии гипоталамуса. Температурный стресс при инфекционных заболеваниях активирует реакцию теплового шока, биохимическим последствием которого является инициация защиты организма от возбудителя. Клетки врожденного иммунитета (нейтрофилы и макрофаги) являются первой линией защиты от патогенных агентов и играют первостепенную роль в развитии бактериальных инфекций. Определенный интерес представляет изучение длительности воздействия гипертермии для достижения баланса между биоэнергетическими затратами указанных клеток, а также исследование течения патологического процесса в организме, предварительно подвергнутого воздействию температуры. На модели животных, подвергнутых воздействию низкой (+4°С) и высокой (+30°С) температуры, изучено функциональное состояние нейтрофилов и макрофагов, включая фагоцитоз, активность ферментов кислородзависимой системы: лактатдегидрогеназы, цитохромоксидазы, миелопероксидазы, показателя стимуляции клеток (внутриклеточное содержание АМФазы) и содержание метаболитов оксида азота. Установлено, что в условиях гипертермии, изменение функциональной активности клеток по уровню ферментов более выражено, чем при воздействии на животных низкой температуры, особенно при 4-часовом воздействии. У животных, предварительно подвергнутых тепловому стрессу, проявления псевдотуберкулезной инфекции были более тяжелыми с увеличением показателей летальности в 2,6 раза, по сравнению с животными, инфицированными Yersinia pseudotuberculosis. У этих животных в начальные сроки (до 7 сут) наблюдалась высокая стимуляция эффекторных клеток воспаления, усиливался их метаболизм, который выражался в повышении активности ферментов кислород-зависимой системы, а также в высокой нитроксидпродуцирующей активности. На фоне выраженного геморрагического компонента патологического процесса и слабой клеточной воспалительной реакции в органах мишенях, наблюдалось истощение компонентов иммунной системы (делимфатизация), что указывало на снижение защитных реакций организма и развитие иммунодефицита. Таким образом в условиях теплового стресса (+30°С), напряженность реакции клеток врожденного иммунитета по показателям функциональной активности (АМФазы, ЛДГ, ЦХО, МПО) была выше, чем при воздействии на животных низкой температуры (+4°С). В указанных температурных условиях определялся высокий уровень праймированности клеток, что снижало их киллинговый потенциал. Эти данные указывают на адекватность используемой модели с целью воспроизведения индуцированного вторичного иммунодефицита по системе врожденной защиты. Причем, в патогенезе псевдотуберкулезной инфекции на фоне пролонгированного действия высокой температуры обнаруживались последствия окислительного стресса фагоцитов в структурных изменениях иммунокомпетентных органов.

Об авторах

Н. Г. Плехова

ФГБОУ ВО Тихоокеанский государственный медицинский университет МЗ РФ

Автор, ответственный за переписку.
Email: pl_nat@hotmail.com

Плехова Наталья Геннадьевна – доктор биологических наук, заведующая Центральной научно-исследовательской лабораторией ТГМУ; ведущий научный сотрудник лаборатории клеточной биологии и гистопатологии НИИ ЭМ имени Г.П. Сомова.

690002, Владивосток, пр. Острякова, 4, тел.: 8 (423) 242-97-78 (служебн.)

Россия

Л. М. Сомова

ФГБНУ НИИ эпидемиологии и микробиологии имени Г.П. Сомова

Email: fake@neicon.ru

Доктор медицинских наук, профессор, главный научный сотрудник лаборатории клеточной биологии и гистопатологии.

Владивосток

Россия

Е. И. Дробот

ФГБНУ НИИ эпидемиологии и микробиологии имени Г.П. Сомова

Email: fake@neicon.ru

Кандидат биологических наук, научный сотрудник лаборатории клеточной биологии и гистопатологии.

Владивосток

Россия

А. В. Лагурева

ФГБОУ ВО Тихоокеанский государственный медицинский университет МЗ РФ

Email: fake@neicon.ru

Младший научный сотрудник Центральной научно-исследовательской лаборатории.

Владивосток

Россия

И. Н. Ляпун

ФГБНУ НИИ эпидемиологии и микробиологии имени Г.П. Сомова

Email: fake@neicon.ru

Кандидат биологических наук, зав. лабораторией клеточной биологии и гистопатологии.

Владивосток

Россия

Н. М. Кондрашова

ФГБОУ ВО Тихоокеанский государственный медицинский университет МЗ РФ

Email: fake@neicon.ru

Кандидат медицинских наук, доцент Института терапии и инструментальной диагностики.

Владивосток

Россия

С. Д. Огнева

ФГБОУ ВО Тихоокеанский государственный медицинский университет МЗ РФ

Email: fake@neicon.ru

Аспирант Центральной научноисследовательской лаборатории.

Владивосток

Россия

Список литературы

  1. Баллюзек Ф.В., Баллюзек М.Ф., Виленский В.И., Горелов С.И., Жигалов С.А., Иванов А.А., Кузьмин С.Н., Определяков Г.А. Управляемая гипертермия. СПб.: Невский диалект, 2001. 110 с.
  2. Мичурина С.В., Васендин Д.В., Ищенко И.Ю., Жданов А.П. Структурные изменения в тимусе крыс после воздействия экспериментальной гипертермии // Бюллетень Волгоградского научного центра РАМН. 2010. № 1 (25). С. 30–33.
  3. Arons M.M., Wheeler A.P., Bernard G.R., Christman B.W., Russell J.A., Schein R., Summer W.R., Steinberg K.P., Fulkerson W., Wright P., Dupont W.D., Swindell B.B. Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Ibuprofen in Sepsis Study Group. Crit. Care Med., 1999, vol. 27, iss. 4, pp. 699–707. doi: 10.1097/00003246-199904000-00020
  4. Casadevall A. Thermal restriction as an antimicrobial function of fever. PLoS Pathog., 2016, vol. 12, no. 5:e1005577. doi: 10.1371/journal.ppat.1005577
  5. Evans S.S., Repasky E.A., Fisher D.T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol., 2015, vol. 15, no. 6, pp. 335–349. doi: 10.1038/nri3843
  6. Frey B., Weiss E.M., Rubner Y., Wunderlich R., Ott O.J., Sauer R., Fietkau R., Gaipl U.S. Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia, 2012, vol. 28, iss. 6, pp. 528–542. doi: 10.3109/02656736.2012.677933
  7. Fisher D.T., Chen Q., Skitzki J.J., Muhitch J.B., Zhou L., Appenheimer M.M., Vardam T.D., Weis E.L., Passanese J., Wang W.C., Gollnick S.O., Dewhirst M.W., Rose-John S., Repasky E.A., Baumann H., Evans S.S. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J. Clin. Invest., 2011, vol. 121, no. 10, pp. 3846–3859. doi: 10.1172/JCI44952
  8. Grunwald M.S., Pires A.S., Zanotto-Filho A., Gasparotto J., Gelain D.P., Demartini D.R., Scholer C.M., de Bittencourt P.I.Jr., Moreira J.C. The oxidation of HSP70 is associated with functional impairment and lack of stimulatory capacity. Cell Stress Chaperones, 2014, vol. 19, iss. 6, pp. 913–925. doi: 10.1007/s12192-014-0516-5
  9. Hasday J.D., Thompson C., Singh I.S. Fever, immunity, and molecular adaptations. Compr. Physiol., 2014, vol. 4, pp. 109–148. doi: 10.1002/cphy.c130019
  10. Hevia A., Delgado S., Sanchez B., Margolles A. Molecular players involved in the interaction between beneficial bacteria and the immune system. Front. Microbiol., 2015, vol. 6:1285. doi: 10.3389/fmicb.2015.01285
  11. Hume D.A. The many alternative faces of macrophage activation. Front. Immunol., 2015, vol. 6:370. doi: 10.3389/fimmu.2015.00370
  12. Jaillon S., Galdiero M.R., Del Prete D., Cassatella M.A., Garlanda C., Mantovani A. Neutrophils in innate and adaptive immunity. Semin. Immunopathol., 2013, vol. 35, iss. 4, pp. 377–394.
  13. Jin Y., Hu Y., Han D., Wang M. J. Chronic heat stress weakened the innate immunity and increased the virulence of highly pathogenic avian influenza virus H5N1 in mice. J. Biomed. Biotechnol., 2011, 10 p. doi: 10.1155/2011/367846
  14. Martinez F.O., Helming L., Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol., 2009, vol. 27, pp. 451–483. doi: 10.1146/annurev.immunol.021908.132532
  15. Mikucki M.E., Fisher D.T., Ku A.W., Appenheimer M.M., Muhitch J.B, Evans S.S. Preconditioning thermal therapy: flipping the switch on IL-6 for anti-tumour immunity. Int. J. Hyperthermia, 2013, vol. 29, no. 5, pp. 464–473. doi: 10.3109/02656736.2013.807440
  16. Radek K.A. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J. Leukoc. Biol., 2010, vol. 88, no. 2, pp. 263–277. doi: 10.1189/jlb.1109740
  17. Repasky E.A., Eng J., Hylander B.L. Radek K.A. Stress, metabolism and cancer: integrated pathways contributing to immune suppression. Cancer J., 2015, vol. 21, no. 2, pp. 97–103. doi: 10.1097/ppo.0000000000000107
  18. Schmidt S., Moser M., Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol. Immunol., 2013, vol. 55, no. 1, pp. 49–58. doi: 10.1016/j.molimm.2012.11.006
  19. Singh I.S., Hasday J.D. Fever, hyperthermia and the heat shock response. Int. J. Hyperthermia, 2013, vol. 29, no. 5, pp. 423–435. doi: 10.3109/02656736.2013.808766
  20. Small P.M., Tauber M.G., Hackbarth C.J., Sande M.A. Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infect. Immun., 1986, vol. 52, no. 2, pp. 484–487.
  21. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell, 2010, vol. 140, no. 6, pp. 805–820. doi: 10.1016/j.cell.2010.01.022
  22. Vujaskovic Z., Poulson J.M., Gaskin A.A., Thrall D.E., Page R.L., Charles H.C., MacFall J.R., Brizel D.M., Meyer R.E., Prescott D.M., Samulski T.V., Dewhirst M.W. Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int. J. Radiat. Oncol. Biol. Phys., 2000, vol. 46, iss. 1, pp. 179–185. doi: 10.1016/S0360-3016(99)00362-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Плехова Н.Г., Сомова Л.М., Дробот Е.И., Лагурева А.В., Ляпун И.Н., Кондрашова Н.М., Огнева С.Д., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».