Seasonal dynamics of methane emission from soils of wet forests: А case study of a mixed forest in the Moscow region
- Autores: Runkov R.A.1,2, Glagolev M.V.1,2,3, Sabrekov A.F.2, Ilyasov D.V.2
-
Afiliações:
- Московский государственный университет им. М.В. Ломоносова
- Югорский государственный университет
- Институт лесоведения РАН
- Edição: Volume 16, Nº 4 (2025)
- Páginas: 152-166
- Seção: Experimental works
- URL: https://ogarev-online.ru/2218-4422/article/view/368019
- DOI: https://doi.org/10.18822/edgcc629924
- ID: 368019
Citar
Texto integral
Resumo
Methane (CH4) the second most potent greenhouse gas in terms of contribution to global warming. Natural sources of methane includes wetlands and other freshwater ecosystems, oceans, natural gas seeps, biomass burning, and termites. However, the contribution of other natural sources should not be underestimated. One such potential source is wet forests, i.e., forests with soils under conditions of constant or temporary waterlogging. Unlike peatlands, forest ecosystems exhibit greater diversity and variability in terms of physico-chemical (e.g., nutrient availability, acidity, redox conditions) and hydrological factors (including periodic flooding and drainage), complicating their study. The magnitude of methane emissions from this source remains uncertain, but fluxes from wet forest soils may be significant. The aim of this study is to assess wet forests as potential methane sources, considering the seasonal variability of observed fluxes (case study of a mixed forest in the Moscow region).
Measurements were conducted from 2019 to 2022 at a wet forest in the Ruzsky District of Moscow Oblast, near the settlement of Dorokhovo. The study site (55°34' N, 36°23' E) is located 67 km west of Moscow's city boundary. The soils of the study site are Umbry-Gleyic Albeluvisols (soddy-podzolic gleyic soils) with silty clay loam texture. The vegetation is presented by a mixed forest dominated by Alnus glutinosa, Quercus robur, Acer platanoides, Asarum europaeum, and Mercurialis perennis. The long-term mean annual air temperature and precipitation for the study site are 5.8°C and 688 mm, respectively.
Twelve field campaigns were carried out in different seasons. Summer campaigns: 5–24 August 2019, 5–25 July 2020, 10–11 and 29–30 August 2021. Autumn campaigns: 24–25 October 2020, 9–10 October and 6 November 2021. Winter campaigns: 9 January and 26 February 2022. Spring campaigns: 8–9 March 2022 and 2–4 May 2022. Methane fluxes were measured using the static chamber method. At each measurement point, 2 to 4 chambers were deployed, with 2 to 19 flux measurements taken per chamber over a 24-hour period, which were treated as replicates. Four gas samples were taken in syringes during each of 9-60 minute flux measurement. Methane concentration in the gas samples was determined by gas chromatography. In 2022, gas concentration inside of the chamber was measured directly using a portable infrared gas analyzer LI-7810 (LI-COR, USA). Additionally, soil temperature and moisture, pH and electrical conductivity of soil water, as well as water table level (WTL) were measured.
Seven points were chosen on a transect from the point Sw1_1 with the average WTL of 31 cm above the soil surface to the point Sw1_7 with the average WTL of 11 cm below the soil surface. The median methane flux at Sw1_1 and Sw1_3, points with the best drainage on the transect, was close to zero, while the maximum flux exceeded 1 mgC × m-2 × h-1. At the downslope point Sw1_5, the mean WTL was 15 cm below the surface. Unlike the upslope points, no methane consumption was observed here; the median emission was 0.5 mgC × m-2 × h-1, with a maximum of 6.8 mgC × m-2 × h-1. At the further downslope point Sw1_2 (mean WTL = 0 cm), the median emission was comparable to that at point Sw1_5, but the maximum emission reached 20 mgC × m-2 × h-1. Finally, at points Sw1_4, Sw1_6, and Sw1_7, where the WTL was between 5 and 11 cm above the soil surface, the median flux ranged from 1.4 to 4 mgC × m‑2 × h-1, with maximum from 13 to 18 mgC × m-2 × h-1. A relatively strong correlation was found exclusively between the median methane flux and WTL (R2 = 0.63). For all other investigated factors, the coefficients of determination did not exceed R2 = 0.27. Furthermore, the raw data (prior to median calculation) showed no significant regression dependence with any of the factors. Our results correspond to the published data on methane emissions from wet forests in the temperate climatic zone and the southern taiga forests of Western Siberia. Similar median emission values were also observed in a tropical forest in the Congo River basin, although the maximum emission values there were several times higher.
Therefore, our findings indicate that wet forests in the Moscow region can be a source of atmospheric CH4. Because of the cold seasons of the Moscow region (and, more broadly, the European part of Russia) is relatively warm, methane emissions during the autumn-winter-spring period likely make a significant contribution to the annual flux. Future research should focus on: (1) more precise mapping of wet forest coverage, (2) investigating the mechanism of methane transport by trees and plants in wet forests, (3) studying the spatial variability of methane fluxes across different types of wet forests, (4) quantifying the relative contribution of diffusive and advective methane transport in mineral soils, and (5) understanding the functioning of methanogenic communities under relatively limited (compared to peatlands) availability of carbon sources.
Palavras-chave
Sobre autores
R. Runkov
Московский государственный университет им. М.В. Ломоносова; Югорский государственный университет
Email: m_glagolev@mail.ru
Rússia, Москва; Ханты-Мансийск
M. Glagolev
Московский государственный университет им. М.В. Ломоносова; Югорский государственный университет; Институт лесоведения РАН
Autor responsável pela correspondência
Email: m_glagolev@mail.ru
Rússia, Москва; Ханты-Мансийск; пос. Успенское (Московская обл.)
A. Sabrekov
Югорский государственный университет
Email: m_glagolev@mail.ru
Rússia, Ханты-Мансийск
D. Ilyasov
Югорский государственный университет
Email: m_glagolev@mail.ru
Rússia, Ханты-Мансийск
Bibliografia
- Adamsen A.P.S., King G.M. 1993. Methane Consumption in Temperate and Subarctic Forest Soils: Rates, Vertical Zonation, and Responses to Water and Nitrogen. Applied and Environmental Microbiology, 59(2): 485-490.
- Albritton D.L., Allen M.R., Baede A.P.M., Church J.A., Cubasch U., Xiaosu D., Yihui D., Ehhalt D.H., Folland C.K., Giorgi F., Gregory J.M., Griggs D.J., Haywood J.M., Hewitson B., Houghton J.T., House J.I., Hulme M., Isaksen I., Jaramillo V.J., Jayaraman A., Johnson C.A., Joos F., Joussaume S., Karl T., Karoly D.J., Kheshgi H.S., Le Quéré C., Maskell K., Mata L.J., McAvaney B.J., McFarland M., Mearns L.O., Meehl G.A., Meira-Filho L.G., Meleshko V.P., Mitchell J.F.B., Moore B., Mugara R.K., Noguer M., Nyenzi B.S., Oppenheimer M., Penner J.E., Pollonais S., Prather M., Prentice I.C., Ramaswamy V., Ramirez-Rojas A., Raper S.C.B., Salinger M.J., Scholes R.J., Solomon S., Stocker T.F., Stone J.M.R., Stouffer R.J., Trenberth K.E., Wang M.-X., Watson R.T., Yap K.S., Zillman J. 2001. Observed Climate Variability and Change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.
- Ambus P., Christensen S. 1995. Spatial and Seasonal Nitrous Oxide and Methane Fluxes in Danish Forest-, Grassland-, and Agroecosystems. Journal of Environ. Qual., 24: 993-1001.
- Ambus P., Robertson G.P. 2006. The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan. Biogeochemistry, 79: 315-337. doi: 10.1007/s10533-005-5313-x
- Aronson E.L., Vann D.R., Helliker B.R. 2012. Methane flux response to nitrogen amendment in an upland pine forest soil and riparian zone, J. Geophys. Res., 117: G03012. doi: 10.1029/2012JG001962
- Anderson B., Bartlett K., Frolking S., Hayhoe K., Jenkins J., Salas W. 2010. Methane and Nitrous Oxide Emissions from Natural Sources. Office of Atmospheric Programs, US EPA, EPA 430-R-10-001, Washington.
- Barthel M., Bauters M., Baumgartner S., Drake T.W., Bey N.M., Bush G., Boeckx P., Botefa C.I., Dériaz N., Ekamba G.L., Gallarotti N., Mbayu F.M., Mugula J.K, Makelele I.A., Mbongo C.E., Mohn J., Mandea J.Z., Mpambi D.M., Ntaboba L.C., Rukeza M.B., Spencer R.G.M., Summerauer L., Vanlauwe B., Van Oost K., Wolf B., Six J. 2022. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nature Communications, 13: 330. doi: 10.1038/s41467-022-27978-6
- Bartlett K.B., Harriss R.C. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26(1-4): 261-320.
- Berdin V.H., Gritsevich I.G., Kokorin A.O., Fedorov Ju.N. 2004. Greenhouse gases – a global environmental resource: A Reference guide. World Wide Fund for Nature of Russia, NOPPU, Moscow, 137 pp. (in Russian). [Бердин В.Х., Грицевич И.Г., Кокорин А.О., Федоров Ю.Н. 2004. Парниковые газы – глобальный экологический ресурс: Справочное пособие. Москва: Всемирный фонд природы России, НОПППУ. 137 c.]
- Bohn T.J., Lettenmaier D.P., Sathulur K., Bowling L.C., Podest E., McDonald K.C., Friborg T. 2007. Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environmental Research Letters, 2(4): 045015. doi: 10.1088/1748-9326/2/4/045015
- Butlers A., Lazdiņš A., Kalēja S., Purviņa D., Spalva G., Saule G. and Bārdule A. 2023. CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil, Forests, 14: 1390. doi: 10.3390/f14071390
- Cao M., Marshall S., Gregson K. 1996. Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model. Journal of Geophysical Research, 101(D9): 14399-14414.
- Conrad R. 2008. Temperature effects on methanogenic microbial communities. In: Microbes and the environment: Perspectives and challenges, (S.J. Liu, H.L. Drake, eds.), pp. 35-40. Science Press, Beijing.
- Davidson S.J., Davies M.A., Wegener E., Claussen S., Schmidt M., Peacock M., Strack M. 2024. Carbon stocks and fluxes from a boreal conifer swamp: Filling a knowledge gap for understanding the boreal C cycle. Journal of Geophysical Research: Biogeosciences, 129: e2024JG008005. doi: 10.1029/2024JG008005
- Davydov D.K., Dyachkova A.V., Simonenkov D.V., Fofonov А.V., Maksutov S.S. 2021. Application of the automated chamber method for longterm measurements CO2 and CH4 fluxes from wetland ecosystems of the West Siberia. Environmental Dynamics and Global Climate Change, 12(1): 5-14.
- Evgrafova S.Yu., Grodnitskaya I.D., Krinitsyn Yu.O., Syrtsov S.N., Masyagina O.V. 2010. Methane emissions from the soil surface in tundra and forest ecosystems of Siberia. Vestnik KrasGAU, 12: 80-86 (in Russian). [Евграфова С.Ю., Гродницкая И.Д., Криницын Ю.О., Сырцов С.Н., Масягина О.В. 2010. Эмиссия метана с поверхности почвы в тундровых и лесных экосистемах Cибири // Вестник КрасГАУ. № 12. С. 80-86].
- Frolking S., Crill P. 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modeling. Global Biogeochemical Cycles, 8: 385-397.
- Gasche R., Papen H., Rennenberg H. (eds.). 2002. Trace Gas Exchange in Forest Ecosystems. Springer, Dordrecht. doi: 10.1007/978-94-015-9856-9.
- Gauci V., Pangala S.R., Shenkin A., Barba J., Bastviken D., Figueiredo V., Malhi Y. 2024. Global atmospheric methane uptake by upland tree woody surfaces. Nature. 631: 796-800.
- Glagolev M.V. 2010. Emission of CH4 from peat soils of Western Siberia: from soil profile to region: Diss. … Cand. Biol. Sciences. Moscow, 211 pp. (In Russian). [Глаголев М.В. 2010. Эмиссия СН4 болотными почвами Западной Сибири: от почвенного профиля до региона: дис. … канд. биол. наук. М.: Московский государственный университет им. М.В. Ломоносова (МГУ). 211 c.]
- Glagolev M.V., Ilyasov D.V., Terentyeva I.E. Sabrekov A.F. Krasnov O.A. Maksyutov S.S. 2017. Methane and carbon dioxide flows in the waterlogged forests of Western Siberian southern and middle taiga subzones. Optika Atmosfery i Okeana, 30(4): 301-309 (in Russian). [Глаголев М.В., Ильясов Д.В., Терентьева И.Е. Сабреков А.Ф. Краснов О.А. Максютов Ш.Ш. 2017. Потоки метана и диоксида углерода в заболоченных лесах южной и средней тайги Западной Сибири // Оптика атмосферы и океана. Т. 30. № 4. С. 301-309].
- Glagolev M.V., Ilyasov D.V., Terentieva I.E., Sabrekov A.F., Mochenov S.Yu, Maksutov S.S. 2018. Methane and carbon dioxide fluxes in the waterlogged forests of south and middle taiga of Western Siberia. IOP Conference Series: Earth and Environmental Science, 138: 012005.
- Glagolev M., Inisheva L., Lebedev V., Naumov A., Dement’eva T., Golovatskaja E., Erohin V., Shnyrev N., Nozhevnikova A. 2001. The Emission of CO2 and CH4 in Geochemically Similar Oligotrophic Landscapes of West Siberia. In: Proceedings of the Ninth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 2000, (M. Fukuda, Y. Kobayashi, eds.). Kohsoku Printing Center, Sapporo, pp. 112-119.
- Glagolev M.V., Kleptsova I.E. 2009. Methane emission in the forest-tundra: towards the “standard model” (Aa2) for West Siberia. Tomsk State Pedagogical University Bulletin, 3(81): 77-81 (In Russian). [Глаголев М.В., Клепцова И.Е. 2009. Эмиссия метана в лесотундре: к созданию «стандартной модели» (Аа2) для Западной Сибири // Вестник Томского государственного педагогического университета. № 3(81). С. 77-81].
- Glagolev M.V., Panikov N.S., Inoue G. 1998. Modeling of methane emission to atmosphere in West Siberian wetland (Bakchar bog, Tomsk area). In: Proceedings of Sixth Symposium on the Joint Permafrost Studies between Japan and Russia in 1997 (S. Mori, Y. Kanazawa, Y. Matsuura, G. Inoue, eds.). Isebu, Tsukuba, pp. 175-190.
- Glagolev M.V., Sabrekov A.F. 2012. Determination of gas exchange on the border between ecosystem and atmosphere: Inverse modeling, Mathematical Biology and Bioinformatics, 7(1): 81-101 (In Russian). [Глаголев М.В., Сабреков А.Ф. 2012. Идентификация газообмена на границе экосистема/атмосфера: метод обратной задачи // Математическая биология и биоинформатика. Т. 7. № 1. С. 81-101].
- Glagolev M.V., Sabrekov A.F., Kleptsova I.E., Filippov I.V., Lapshina E.D., Machida T., Maksyutov Sh.Sh. 2012. Methane emission from bogs in the subtaiga of Western Siberia: The development of Standard Model. Eurasian Soil Science, 45(10): 947-957. doi: 10.1134/S106422931210002X
- Glagolev M.V., Shnyrev N.A. 2007. Dynamics of methane emission from natural wetlands in the summer and fall seasons (case study in the south of Tomsk oblast). Moscow university soil science bulletin, 62(1): 7-14. doi: 10.3103/S0147687407010024.
- Haas-Laursen D.E., Harley D.E., Prinn R.C. 1996. Optimizing an inverse method to deduce time-varying emissions of trace gases. Journal of Geophysical Research, 101(D17): 22823-22831.
- Hein R., Crutzen P.J., Heimann M. 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles, 11(1): 43-76.
- Ilyasov D.V., Mochenov S.Y., Rokova A.I., Glagolev M.V., Kupriianova I.V., Suvorov G.G., Sabrekov A.F., Terentieva I.E. 2023. Moscow region’s swamp forests mapping for inventory of CH4 and CO2 fluxes. Environmental Dynamics and Global Climate Change, 14(2): 116-131. doi: 10.18822/edgcc568952
- IPCC. 2023. Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, (H. Lee, J. Romero, eds.), pp. 1-34. IPCC, Geneva, Switzerland. doi: 10.59327/IPCC/AR6-9789291691647.001
- Karol I.L., Kiselev A.A. 2004. Atmospheric methane and global climate. Priroda, 7: 47-52 (in Russian). [Кароль И.Л., Киселев А.А. 2004. Атмосферный метан и глобальный климат // Природа. № 7. C. 47-52].
- Khromov S.P., Mamontova L.I. 1974. Meteorological Dictionary. Gidrometeoizdat, Leningrad (in Russian). [Хромов С.П., Мамонтова Л.И. 1974. Метеорологический словарь. Л.: Гидрометеоиздат].
- Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J., Dlugokencky E., Bergamaschi P., Bergmann D., Blake D., Bruhwiler L., Cameron-Smith P., Castaldi S., Chevallier F., Feng L., Fraser A., Heimann M., Hodson E., Houweling S., Josse B., Zeng G. 2013. Three decades of global methane sources and sinks. Nature Geoscience, 6: 813-823. doi: 10.1038/ngeo1955
- Mander Ü., Maddison M., Soosaar K., Karabelnik K. 2011. The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands. Wetlands, 31: 1023-1032. doi: 10.1007/s13157-011-0218-z
- Matthews E., Fung I. 1987. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1: 61-86.
- Mochenov S.Yu., Churkina A.I., Sabrekov S.F., Glagolev M.V., Il’yasov D.V., Terentieva I.E., Maksyutov S.S. 2018. Soils in seasonally flooded forests as methane sources: A case study of West Siberian South taiga. IOP Conference Series: Earth and Environmental Science, 138(1): 012012.
- Moore T.R., Dalva M. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science, 44: 651-664.
- Pangala S.R., Moore S., Hornibrook E.R.C., Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist, 197(2): 524-531.
- Purvaja R., Ramesh R., Frenzel P. 2004. Plant mediated methane emission from an Indian mangrove. Global Change Biology, 10(11): 1825-1834.
- Rusch H., Rennenberg H. 1998. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant and Soil, 201: 1-7. doi: 10.1023/A:1004331521059
- Sabrekov A.F., Filippov I.V., Dyukarev E.A., Zarov E.A., Kaverin A.A., Glagolev M.V., Terentieva I.E., Lapshina E.D. 2022. Hot spots of methane emission in West Siberian middle taiga wetlands disturbed by petroleum extraction activities. Environmental Dynamics and Global Climate Change, 13(3): 142-155. doi: 10.18822/edgcc121107
- Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T. 2011. Methane emission from middle taiga oligotrophic hollows of Western Siberia. Tomsk State Pedagogical University Bulletin, 5(107): 135-143.
- Saunois M., Stavert A.R., Poulter B., Bousquet P., Canadell J.G., Jackson R.B., Raymond P.A., Dlugokencky E.J., Houweling S., Patra P.K., Ciais P., Arora V.K., Bastviken D., Bergamaschi P., Blake D.R., Brailsford G., Bruhwiler L., Carlson K.M., Carrol M., Castaldi S., Chandra N., Crevoisier C., Crill P.M., Covey K., Curry C.L., Etiope G., Frankenberg C., Gedney N., Hegglin M. I., Höglund-Isaksson L., Hugelius G., Ishizawa M., Ito A., Janssens-Maenhout G., Jensen K.M., Joos F., Kleinen T., Krummel P.B., Langenfelds R.L., Laruelle G.G., Liu L., Machida T., Maksyutov S., McDonald K.C., McNorton J., Miller P.A., Melton J.R., Morino I., Müller J., Murguia-Flores F., Naik V., Niwa Y., Noce S., O'Doherty S., Parker R.J., Peng C., Peng S., Peters G.P., Prigent C., Prinn R., Ramonet M., Regnier P., Riley W.J., Rosentreter J.A., Segers A., Simpson I.J., Shi H., Smith S.J., Steele L.P., Thornton B.F., Tian H., Tohjima Y., Tubiello F.N., Tsuruta A., Viovy N., Voulgarakis A., Weber T.S., van Weele M., van der Werf G.R., Weiss R.F., Worthy D., Wunch D., Yin Y., Yoshida Y., Zhang W., Zhang Z., Zhao Y., Zheng B., Zhu Q., Zhu Q., Zhuang Q. 2020. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data, 12: 1561-1623. doi: 10.5194/essd-12-1561-2020
- Semenov S.M., Govor I.L., Uvarova N.E. 2018. The Role of Methane in Modern Climate Change. IGKE, Moscow, 106 pp. (in Russian). [Семенов С.М., Говор И.Л., Уварова Н.Е. 2018. Роль метана в современном изменении климата. Москва, ИГКЭ. 106 c.]. URL: https://www.elibrary.ru/download/elibrary_50262491_34181954.pdf
- Shein E.V. 2005. Course of Soil Physics. Publishing House of Moscow State University, Moscow, 432 pp. (in Russian). [Шеин Е.В. 2005. Курс физики почв. М.: Изд-во МГУ. 432 c.].
- Shestakov I.E. 2013. Allocation of valuable soil objects on the territory of perm city within the limits of ecological network. Anthropogenic transformation of the natural environment, 1: 86-90. [Electronic resource], available at the link (in Russian). [Shestakov I.E. 2013. выделение ценных почвенных объектов на территории г. Перми в рамках действующей сети ООПТ // Антропогенная трансформация природной среды. № 1. С. 86-90. [Электронный ресурс], доступен по ссылке] URL: https://www.elibrary.ru/download/elibrary_25284318_17070748.pdf (Дата обращения: [27.12.2023]).
- Sjögersten S., Siegenthaler A., Lopez OR., Aplin P., Turner B., Gauci V. 2019. Methane emissions from tree stems in neotropical peatlands. New Phytol., 225(2): 769-781. doi: 10.1111/nph.16178
- Sokolova T.A., Shoba S.A., Bgantsev V.N., Urusevskaya I.S. 1987. Profiling and intra-horizon differentiation of clay material in derno-podzolic soils on moraine. Pochvovedenie, 6: 38-48. [Соколова Т.А., Шоба С.А., Бганцов В.Н., Урусевская И.С. 1987. Профильная и внутригоризонтальная дифференциация глинистого материала в дерново-подзолистых почвах на морене // Почвоведение. № 6. С. 38-48].
- Vompersky S.E., Sirin A.A., Sal’nikov A.A., Tsyganova O.P., Valyaeva N.A. 2011. Estimation of forest cover extent over peatlands and paludified shallow-peat lands in Russia. Contemporary Problems of Ecology, 4(7): 734-741
- Warneck P. 1988. Chemistry of the Natural Atmosphere. Acad. Press, N.Y. P. 757.
- Wiegel J. 1990. Temperature spans for growth: hypothesis and discussion. FEMS Microbiology Reviews. 75: 155-169. doi: 10.1111/j.1574-6968.1990.tb04092.x
- World Meteorological Organization (WMO). 1994. Scientific Assessment of Ozone Depletion. Report № 37.
- Zona D., Oechel W.C., Kochendorfer J., Paw U K.T., Salyuk A.N., Olivas P.C., Oberbauer S.F., Lipson D.A. 2009. Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochem. Cycles, 23: GB2013. doi: 10.1029/2009GB003487
Arquivos suplementares

