On the stability of Lotka-Volterra model with a delay

Capa

Citar

Texto integral

Resumo

The paper examines the stability problem of biological, economic and other processes modeled by the Lotka-Volterra equations with delay. The difference between studied equations and the known ones is that the adaptability functions and the coefficients of the relative change of the interacting subjects or objects are non-linear and take into account variable delay in the action of factors affecting the number of subjects or objects. Moreover, these functions admit the existence of equilibrium positions’ set that is finite in a bounded domain. The stability study of three types of equilibrium positions is carried out using direct analysis of perturbed equations and construction of Lyapunov functionals that satisfy conditions of well-known theorems. Corresponding sufficient conditions for asymptotic stability including global stability are derived, as well as instability and attraction conditions of these positions.

Sobre autores

Jumanazar Khusanov

Jizzakh Polytechnic Institute

Email: d.khusanov1952@mail.ru
ORCID ID: 0000-0001-9444-9324

Ph.D. (Phys.-Math.), Professor, Jizzakh Polytechnic Institute

Uzbequistão, 4 I. Karimov St., Jizakh 130100, Uzbekistan

Azizbeck Kaxxorov

I. Karimov Tashkent State Technical University

Autor responsável pela correspondência
Email: azizqahhorov@gmail.com
ORCID ID: 0000-0001-5723-8640

Graduate Student

Uzbequistão, 2 University St., Tashkent 100095, Uzbekistan

Bibliografia

  1. V. Volterra, Lecons sur la theorie mathematique de la lutte pour la vie, Gauthier-Villars, Paris, 1990, 226 p.
  2. V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, New York, 1959, 288 p.
  3. A. J. Lotka, Elements of physical biology, Williams and Wilkins Co, Baltimore, 1925, 460 p.
  4. J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977 DOI: https://doi.org/10.1007/978-1-4612-9892-2, 366 p.
  5. Yu. M. Sverezhev, D. O. Logofet, Stability of biological communities, Nauka, Moscow, 1978 (In Russ.), 352 p.
  6. A. I. Kiryanen, Stability of systems with aftereffect and their applications, St. Petersburg University Publ., St. Petersburg, 1994 (In Russ.), 240 p.
  7. A. Yu. Alexandrov, A. V. Platonov, V. N. Starkov, N. A. Stepanenko, Mathematical modeling and study of the stability of biological communities, Lan Publ., St. Petersburg, 2017 (In Russ.), 270 p.
  8. N. Rouche, P. Habets, M. Laloy, Stability theory by Lyapunov’s direct method, Springer, New York, 1977 DOI: https://doi.org/10.1007/978-1-4684-9362-7, 396 p.
  9. N. N. Krasovskii, Stability of motion, Standford University Press, Standford, 1963, 218 p
  10. A. S. Andreev, D. Kh. Khusanov, “On the method of Lyapunov functionals in the problem of asymptotic stability and instability”, Differential Equations, 34:7 (1998), 876–885 (In Russ.).
  11. D. Kh. Khusanov, On the constructive and qualitative theory of functional differential equations, Fan Publ., Tashkent, 2002 (In Russ.).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Khusanov J.K., Kaxxorov A.E., 2022

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).