ПРИЧИНЫ НЕОПРЕДЕЛЁННОСТИ В ПАЛЕОКЛИМАТИЧЕСКИХ РЕКОНСТРУКЦИЯХ ПО ИЗОТОПНОМУ СОСТАВУ КИСЛОРОДА ЛЕДНИКОВОГО ЛЬДА ЭЛЬБРУСА (ЗАПАДНОЕ ПЛАТО)

Обложка

Цитировать

Полный текст

Аннотация

Выполнены измерения изотопного состава кислорода в неглубоких кернах, полученных в разные годы на Западном плато Эльбруса. Совмещение изотопной записи (δ18О) по глубине для трёх кернов показало, что в пределах локального участка Западного плато до 330 мм вод. экв. в слое годовой аккумуляции, т.е. около 20% средней годовой аккумуляции может быть сформировано за счёт перераспределения выпавшего снега. Неточности в реконструкции температур по среднесезонным значениям δ18О связаны с изменением сезонных пропорций в накоплении снега и с неравномерностью выпадения осадков внутри сезонов.

Об авторах

Ю. Н. Чижова

Институт геологии рудных месторождений, петрологии, минералогии и геохимии РАН; Институт географии РАН

Автор, ответственный за переписку.
Email: eacentr@yandex.ru
Россия, Москва; Россия, Москва

В. Н. Михаленко

Институт географии РАН

Email: eacentr@yandex.ru
Россия, Москва

С. С. Кутузов

Институт географии РАН; Национальный исследовательский университет “Высшая школа экономики”,

Email: eacentr@yandex.ru
Россия, Москва; Россия, Москва

И. И. Лаврентьев

Институт географии РАН

Email: eacentr@yandex.ru
Россия, Москва

В. Я. Липенков

Институт географии РАН; Арктический и Антарктический научно-исследовательский институт

Email: eacentr@yandex.ru
Россия, Москва; Россия, Санкт-Петербург

А. В. Козачек

Арктический и Антарктический научно-исследовательский институт

Email: eacentr@yandex.ru
Россия, Санкт-Петербург

Список литературы

  1. Екайкин А.А., Козачек А.В., Михаленко В.Н. Способ восстановления рядов метеорологических характеристик по данным исследования ледяных кернов горных районов. Патент 2643706. Дата регистрации: 05.02.2018.
  2. Козачек A.B., Екайкин А.А., Михаленко В.Н., Липенков В.Я., Кутузов С.С. Изотопный состав ледяных кернов, полученных на Западном плато Эльбруса // Лёд и Снег. 2015. Т. 55. № 4. С. 35–49.
  3. Ледники и климат Эльбруса / Отв. ред. В.Н. Михаленко. М.–СПб.: Нестор-История, 2020. 372 с
  4. Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег. 2010. № 2. С. 12–18.
  5. Лаврентьев И.И., Кутузов С.С., Михаленко В.Н., Судакова М.С., Козачек А.В. Пространственно-временнaя изменчивость снегонакопления на Западном плато Эльбруса (Центральный Кавказ) // Лёд и Снег. 2022. Т. 62. № 2. С. 165–178.
  6. Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Торопов П.А., Владимирова Д.О., Абрамов А.А., Мацковский В.В. Гляциоклиматические исследования Института географии РАН в кратере Восточной вершины Эльбруса в 2020 г. // Лёд и Снег. 2021. Т. 61. № 1. С. 149–160.
  7. Михаленко В.Н. Бурение льда близ вершины Эльбруса // Лёд и Снег. 2010. № 1 (109). С. 123–126.
  8. Рототаева О.В., Носенко Г.А., Керимов А.М., Кутузов С.С., Лаврентьев И.И., Никитин С.А., Керимов А.А., Тарасова Л.Н. Изменения баланса массы ледника Гарабаши (Эльбрус) на рубеже XX–XXI вв. // Лёд и Снег. 2019. Т. 59. № 1. С. 5–22.
  9. Bohleber P., Wagenbach D., Schöner W., Böhm R. To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series? // Tellus B: Chemical and Physical Meteorology. 2013. T. 65. № 1. P. 20148. https://doi.org/10.3402/tel-lusb.v65i0.20148
  10. Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. № 3465. P. 1702–1703.
  11. Cuffey K.M., Steig E.J. Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland // Journ. of Glaciology. 1998. V. 44. P. 273–284.
  12. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436–468.
  13. Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjörnsdottir A.E., Jouzel J., Bond G. Evidence for general instability of past climate from a 250-kyr ice-core record // Nature. 1993. V. 364. P. 218–220. https://doi.org/10.1038/364218a0
  14. Fisher D.A., Koerner R.M., Paterson W.S.B., Dansgaard W., Gundestrup N., Reeh N. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles // Nature. 1983. V. 301. P. 205–209. https://doi.org/10.1038/301205a0
  15. Fisher D.A., Reeh N., Clausen H.B. Stratigraphic noise in time series derived from ice cores // Annals of Glaciology. 1985. V. 7. P. 76–83.
  16. Fisher D., Koerner R. The effects of wind on δ(18O) and accumulation give an inferred record of seasonal δ amplitude from the Agassiz Ice Cap, Ellesmere Island, Canada // Annals of Glaciology. 1988. V. 10. P. 34–37. https://doi.org/10.3189/S0260305500004122
  17. Johnsen S.J. Stable isotope homogenization of polar firn and ice // Isotopes and Impurities in Snow and Ice. Proceedings of the Grenoble Symposium, IAHS Publ., Grenoble, France, 1977. No. 118. P. 210–219.
  18. Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion / Physics of ice core records, edited by Hondoh T. Hokkaido Univ. Press, Sapporo, Japan, 2000. P. 121–140.
  19. Jouzel J., Alley R.B., Cuffey K., Dansgaard W., Grootes P., Hoffmann G., Johnsen S.J., Koster R., Peel D., Shuman C., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores // Journ. of Geophysical Research. Oceans. 1997. V. 102. P. 26471–26487.
  20. Markle B., Steig E. Improving temperature reconstructions from ice-core water-isotope records // Climate of the Past. 2022. V. 18. P. 1321–1368.
  21. Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation // Journ. of Geophys. Research. Oceans. 1979. V. 84. P. 5029–5033.
  22. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Fain X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
  23. Münch T., Kipfstuhl S., Freitag J., Meyer H., Laepple T. Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen station, Dronning Maud Land // Climate of the Past Discussions. 2015. V. 11. P. 5605–5649.
  24. Neumann T.A., Waddington E.D. Effects of firn ventilation on isotopic exchange // Journ. of Glaciology. 2004. V. 50. P. 183–194.
  25. Sime L.C., Marshall G.J., Mulvaney R., Thomas E.R. Interpreting temperature information from ice cores along the Antarctic Peninsula: ERA40 analysis // Geophysical Research Letters. 2009. V. 36. L18801. https://doi.org/10.1029/2009GL038982
  26. Sime L.C., Lang N., Thomas E.R., Benton A.K., Mulvaney R. On high-resolution sampling of short ice cores: dating and temperature information recovery from Antarctic Peninsula virtual cores // Journ. of Geophys. Research. 2011. V. 116. D20117. https://doi.org/10.1029/2011JD015894
  27. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Intern. Journ. of Climatology. 2019. V. 39. № 12. P. 4703–4720.
  28. Persson A., Langen P.L., Ditlevsen P., Vinther B.M. The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland // Journ. of Geophys. Research. 2011. V. 116. D20120. https://doi.org/10.1029/2010JD015517
  29. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420.000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436.
  30. Preunkert S., Legrand M., Kutuzov S., Ginot P., Mikhalenko V., Friedrich R. The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe // Atmospheric Chemistry and Physics. 2019. V. 19. P. 14119–14132. https://doi.org/10.5194/acp-19-14119-2019
  31. Steen-Larsen H.C., Masson-Delmotte V., Hirabayashi M., Winkler R., Satow K., Prié F., Bayou N., Brun E., Cuffey K.M., Dahl-Jensen D., Dumont M., Guillevic M., Kipfstuhl S., Landais A., Popp T., Risi C., Steffen K., Stenni B., Sveinbjörnsdottír A.E. What controls the isotopic composition of Greenland surface snow? // Climate of the Past. 2014. V. 10. P. 377–392. https://doi.org/10.5194/cp-10-377-2014
  32. Town M.S., Warren S.G., von Walden P., Waddington E.D. Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets // Journ. of Geophys. Research. 2008. V. 113. D24303. https://doi.org/10.1029/2008JD009852
  33. Waddington E.D., Steig E.J., Neumann T.A. Using characteristic times to assess whether stable isotopes in polar snow can be reversibly deposited // Annals of Glaciology. 2002. V. 35. P. 118–124.
  34. Whillans I.M., Grootes P.M. Isotopic diffusion in cold snow and firn // Journ. of Geophysical Research. 1985. V. 90. P. 3910–3918. https://doi.org/10.1029/JD090iD02p03910
  35. Yu W., Yao T., Thompson L.G., Jouzel J., Zhao H., Xu B., Jing Z., Wang N., Wu G., Ma Y., Gao J., Yang X., Zhang J., Qu D. Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O // Earth and Planetary Science Letters. 2021. V. 554. 116665. https://doi.org/10.1016/j.epsl.2020.116665

Дополнительные файлы


© Ю.Н. Чижова, В.Н. Михаленко, С.С. Кутузов, И.И. Лаврентьев, В.Я. Липенков, А.В. Козачек, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».