Numerical simulation of debris flow caused by Bashkara Glacier lake outburst flood in 2017
- Авторлар: Solodova A.S.1, Petrakov D.A.1, Puganov K.A.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 64, № 4 (2024)
- Беттер: 527-542
- Бөлім: Glaciers and ice sheets
- URL: https://ogarev-online.ru/2076-6734/article/view/282793
- DOI: https://doi.org/10.31857/S2076673424040043
- EDN: https://elibrary.ru/HTRDDK
- ID: 282793
Дәйексөз келтіру
Аннотация
Glacier lake outburst floods (GLOFs) are among the most destructive natural hazards in high mountain areas. Mathematical modeling can help to assess the potential consequences of such outbursts, delineate hazard zones, and calculate characteristics of debris flows and floods. The study is focused on the Lake Bashkara outburst on September 1, 2017, forming a stony debris flow with a total volume of about 1*106 m3. The availability of extensive data on this outburst allows to simulate the event using the r.avaflow program. The software can account for up to three phases in the flow: liquid, solid and fine solid. In our case the number of phases was reduced to two: liquid and solid. The software utilizes the volume of entrained material, flow parameters, and pre- and post- GLOF Digital Elevation Models (DEMs) obtained by previous researchers. The results were compared with actual data on the outburst and previous numerical simulations. The limits of the debris flow hazard zone, depth values, flow speeds (averaging 6 m/s), and travel time to different control points correlate well with previous simulations and eye-witness estimates. Due to the involvement of solid material, the calculated values of flow speed and depth increased slightly comparatively to previous estimates. This work is the first attempt to calculate the pressure and kinetic energy of the flow for different sections in the channel, and to assess the amount of eroded and accumulated material, changed the terrain after the GLOF. The obtained inundation zone almost replicates the observed boundaries delineated using post-GLOF Pleiades image on September, 3. The tested model, r.avaflow, can be applied in the Mt. Elbrus region to assess the dynamics and impact zones of stony debris flows initiated by lake outbursts.
Авторлар туралы
A. Solodova
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: annanasiy99@mail.ru
Ресей, Moscow
D. Petrakov
Lomonosov Moscow State University
Email: annanasiy99@mail.ru
Ресей, Moscow
K. Puganov
Lomonosov Moscow State University
Email: annanasiy99@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Vinogradov Yu.B. Glacial outburst floods and debris flows. Glyacial’nye proryvnye pavodki i selevye potoki. Leningrad: Hydrometeoizdat, 1977, 155: 4. [In Russian].
- Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh., Savernyuk E.A., Chernomorets S.S. Conditions and mechanisms of Bashkarinsky lakes outbursts in the Adyl-Su river valley (Central Caucasus). Sovremennye problemy geologii geofiziki i geoekologii Severnogo Kavkaza. Modern problems of geology, geophysics, and geoecology of the Northern Caucasus. 2020: 369–375. [In Russian].
- Dubinsky G.P., Snegur I.P. Physical geography features of the upper Baksan River valley and meteorological observations at Bashkara Glacier. Materialy Kavkazskoy ekspeditsii (po programme MGG). Data of the Caucasian Expedition within the International Geophysical Year framework Т. 3. Kharkov: Izdatelstvo Kharkovskogo Universiteta, 1961: 215–285. [In Russian].
- Kidyaeva V.M., Petrakov D.A., Krylenko I.N., Aleynikov A.A., Stoffel M., Graf K. An experience of modelling the Bashkara lakes outburst. Georisk. Georisk. 2018, 12 (2): 38–47. [In Russian].
- Kyunzh Zh.A., Holli F.M., Verwey A. Numerical methods for river hydraulics. Energoatomizdat. Energoatom Publishing. 1985: 252. [In Russian].
- Lavrentyev I.I., Petrakov D.A., Kutuzov S.S., Kovalen-ko N.V., Smirnov A.M. Assessment of glacier lakes development potential in the Central Caucasus. Led i Sneg. Ice and Snow. 2020, 60 (3): 343–360. https://doi.org/10.31857/S2076673420030044 [In Russian].
- Petrakov D.A., Chernomorets S.S., Dokukin M.D., Aleynikov A.A., Bekkiev M.Yu., Vishadjieva K.S., Zaporozhchenko E.V., Kalov R.Kh., Kidyaeva V.M., Krylenko V.V., Krylenko I.N., Savernyuk E.A., Smirnov A.M., Rets E.P., Khadzhiev M.M. The outburst of the Bashkara glacier lake and the catastrophic debris flow in the Elbrus region on September 1, 2017. Problemy prognozirovaniya chrezvychaynykh situatsiy. Problems of Predicting Emergencies. 2017: 95–97. [In Russian].
- Puganov K.A. r.avaflow WEB application. Retrieved from: https://github.com/kostyanp95/r.avaflow Last access: April 10, 2024. [In Russian].
- Seinova I.B. Debris flow processes in the Baksan river basin over the past millennium (Central Caucasus). Moscow: VINITI, 1997: 295 [In Russian].
- Khromova T.E., Nosenko G.A., Glazovsky A.F., Muraviev A.Ya., Nikitin S.A., Lavrentyev I.I. New Inventory of the Russian glaciers based on satellite data (2016–2019). Led i Sneg. Ice and Snow. 2021, 61 (3): 341–358. https://doi.org/10.31857/S2076673421030093 [In Russian].
- Chernomorets S.S., Petrakov D.A., Aleynikov A.A., Bek-kiev M.Yu., Vishadjieva K.S., Dokukin M.D., Kalov R.Kh., Kidyaeva V.M., Krylenko V.V., Krylenko I.N., Rets E.P., Savernyuk E.A., Smirnov A.M. The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1. 2017. Kriosfera Zemli. Earth’s Cryosphere. 2018, 22 (2): 70–80. [In Russian].
- Chernomorets S.S., Petrakov D.A., Krylenko I.N., Tutubalina O.V., Aleynikov A.A., Krylenko I.V., Tarbeeva A.M. Changes of the Bashkara glacier-lake system and assessment of debris flow hazard in the Adyl-Su river valley (Caucasus). Kriosfera Zemli. Earth’s Cryosphere. 2007, 11 (1): 72–84. [In Russian].
- Iudina V.A., Iudin N.E., Vinogradova T.A. Program for calculation of outburst flood and debris flows (FLOVI). Certificate of state registration of the computer program no. 2022683748. 2022.
- Coussot P., Laigle D., Arattano M., Deganutti A., Marchi L. “Direct determination of rheological characteristics of debris flow.” Journ. of Hydraulic Engineering. 1998, 124 (8): 865–868.
- Domnik B., Pudasaini S.P., Katzenbach R., Miller S.A. Coupling of full two–dimensional and depth–averaged models for granular flows. Journ. of Non–Newtonian Fluid Mechanics. 2013, 201: 56–68. https://doi.org/10.1016/j.jnnfm.2013.07.005
- Fischer J.T., Kowalski J., Pudasaini S.P. Topographic curvature effects in applied avalanche modeling. Cold Regions Science and Technology. 2012, 74: 21–30.
- Harrison S., Kargel J.S., Huggel C., Reynolds J., Shugar D.H., Betts R. A., Emmer A., Glasser N., Haritashya U.K., Klimeš J., Reinhardt L., Schaub Y., Wiltshi-re A., Regmi D., Vilímek V. Climate change and the global pattern of moraine–dammed glacial lake outburst floods. The Cryosphere. 2018, 12 (4): 1195–1209.
- Iverson R.M., Denlinger R.P. Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory. Journ. of Geophysical Research: Solid Earth. 2001, 106 (B1): 537–552. https://doi.org/10.1029/2000JB900329
- Kornilova E.D. Krylenko I.N., Rets E.P., Motovilov Y.G., Bogachenko E.M., Krylenko I.V., Petrakov D.A. Modeling of extreme hydrological events in the Baksan River basin, the Central Caucasus, Russia. Hydrology. 2021, 8 (1): 24. https://doi.org/10.3390/hydrology8010024
- Mergili M., Emmer A., Juřicová A., Cochachin A., Fischer J.T., Huggel C., Pudasaini S.P. How well can we simulate complex hydro‐geomorphic process chains? The 2012 multi‐lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms. 2018, 43 (7): 1373–1389. https://doi.org/10.1002/esp.4318
- Mergili M., Fischer J.T., Krenn J., Pudasaini S.P. r. avaflow v1, an advanced open–source computational framework for the propagation and interaction of two–phase mass flows. Geoscientific Model Development. 2017, 10 (2): 553–569. https://doi.org/10.5194/gmd-2016-218
- Muzychenko L.E., Lobkina V.A., Muzychenko A.A. Calculation of Anthropogenic Mudflows Parameters in the Dumps of the Listvennichnyi Quarry (Sakhalin Island). Russian Journ. of Pacific Geology. 2023, 17 (1): 80–89.
- O’Brien J., Julien P., Fullerton W. Two-dimensional water flood and mudflow simulation. Journ. of Hydraulic Engineering. 1993, 119 (2): 244–261.
- Petrakov D.A. Tutubalina O.V., Aleinikov A.A., Chernomorets S.S., Evans S.G., Kidyaeva V.M., Krylenko I.N., Norin S.V., Shakhmina M.S., Seynova I. B. Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Natural Hazards. 2012, 61 (3): 1293–1316. https://doi.org/10.1007/s11069-011-9983-5
- Pudasaini S.P., Mergili M. A multi‐phase mass flow model. Journ. of Geophysical Research: Earth Surface. 2019, 124 (12): 2920–2942. https://doi.org/10.1029/2019JF005204
- r.avaflow. The mass flow simulation tool. Retrieved from: https://www.landslidemodels.org/r.avaflow/ Last access: April 10, 2024. [In Russian].
- Savage S.B., Hutter K. The motion of a finite mass of granular material down a rough incline. Journ. of Fluid Mechanics. 1989, 199: 177–215.
- Tielidze L., Wheate R. The greater caucasus glacier inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018, 12 (1): 81–94. https://doi.org/10.5194/tc-12-81-2018
- Voellmy A. Uber die zerstorungskraft von lawinen. Bauzeitung. 1955, 73: 159–165.
- von Boetticher A., Turowski J.M., McArdell B.W., Rickenmann D., Kirchner J.W. DebrisInterMixing–2.3: a finite volume solver for three–dimensional debris–flow simulations with two calibration parameters–Part 1: Model description. Geoscientific Model Development. 2016, 9 (9): 2909–2923. https://doi.org/10.5194/gmd-9-2909-2016
Қосымша файлдар
