Системная психоневрология и болевые синдромы
- Авторы: Дамулин И.В.1,2
-
Учреждения:
- ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России
- ГБУЗ «Московский клинический научно-практический центр» Департамента здравоохранения г. Москвы
- Выпуск: Том 19, № 9 (2017)
- Страницы: 37-43
- Раздел: Статьи
- URL: https://ogarev-online.ru/2075-1753/article/view/94864
- DOI: https://doi.org/10.26442/2075-1753_19.9.37-43
- ID: 94864
Цитировать
Полный текст
Аннотация
В обзорной статье анализируются современные данные о патогенезе боли. При помощи функциональной нейровизуализации было показано, что в ответ на ноцицептивные стимулы происходит более обширная активация церебральных связей, чем это считалось ранее. Также была продемонстрирована и важность функциональных связей, обеспечивающих интеграционную координацию активации структур головного мозга. При этом в процессе ощущения боли играют большую роль спонтанные церебральные осцилляции и изменения функции внимания. Процесс хронификации боли связан с изменениями нейрональных связей, их динамикой. При этом имеют значение и изменения в эмоциональной сфере, и когнитивные реакции. Детально рассматриваются изменения при головной боли разного генеза (мигрень, кластерная, абузусная головная боль, головная боль напряжения), а также при болях в спине. Делается вывод о том, что полученные данные открывают новые возможности для разработки методов воздействия, способных уменьшить или совсем избавиться от боли разного генеза.
Полный текст
Открыть статью на сайте журналаОб авторах
Игорь Владимирович Дамулин
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России; ГБУЗ «Московский клинический научно-практический центр» Департамента здравоохранения г. Москвы
Email: damulin@mmascience.ru
д-р мед. наук, проф. каф. нервных болезней и нейрохирургии; вед. науч. сотр. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
Список литературы
- Дамулин И.В. Особенности структурной и функциональной организации головного мозга. Журн. неврологии и психиатрии им. с.с.корсакова. 2016; 116 (11): 163-8. doi: 10.17116/jnevro2016116111163-
- Van den Heuvel M.P, Sporns O. Network hubs in the human brain. Trends in Cognitive Sciences 2013; 17 (12): 683-96. doi: 10.1016/j.tics.2013.09.012
- Van den Heuvel M.P, Bullmore E.T, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345-61. doi: 10.1016/j.tics.2016.03.001
- Hu L, lannetti G.D. Painful issues in pain prediction. Trends in Neurosciences 2016; 39 (4): 212-20. doi: 10.1016/j.tins.2016.01.004
- Kucyi A, Davis K.D. The dynamic pain connectome. Trends in Neurosciences 2015; 38 (2): 86-95. doi: 10.1016/j.tins.2014.11.006
- Kucyi A, Davis K.D. The neural code for pain: from single cell electrophysiology to the dynamic pain connectome. Neuroscientist 2016; 107385841666771. doi: 10.1177/1073858416667716
- Sprenger C, Finsterbusch J, Buchel C. Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical fMRI study. J Neurosci 2015; 35 (10): 4248-57. doi: 10.1523/jneurosci.4897-14.2015
- Torta D.M, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex 2017; 89: 120-34. doi: 10.1016/j.cortex.2017.01.010
- Ter Minassian A, Ricalens E, Humbert S et al. Dissociating anticipation from perception: acute pain activates default mode network. Human Brain Mapping 2012; 34 (9): 2228-43. doi: 10.1002/hbm.22062
- Cauda F, Palermo S, Costa T et al. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NeuroImage: Clinical 2014; 4: 676-86. doi: 10.1016/j.nicl.2014.04.007
- Wang Z, Yang Q, Chen L.M. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn Reson Imaging 2017; 36: 56-67. doi: 10.1016/j.mri.2016.10.015
- Yang Q, Wang Z, Yang L et al. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Human Brain Mapping 2017; 38 (4): 1815-32. doi: 10.1002/hbm.23484
- Amin F.M, Hougaard A, Magon S et al. Change in brain network connectivity during PA- CAP38-induced migraine attacks. Neurology 2015; 86 (2): 180-7. doi: 10.1212/wnl.0000000000002261
- Colombo B, Rocca M.A, Messina R. et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci 2015; 36 (Suppl. 1): S41-S45. doi: 10.1007/s10072-015-2145-x
- Coppola G, Di Renzo A, Tinelli E et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2017: 033310241771523. doi: 10.1177/0333102417715230
- Hougaard A, Amin F.M, Larsson H.B.W. et al. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Human Brain Mapping 2017; 38 (5): 2635-642. doi: 10.1002/hbm.23548
- Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011; 70 (5) : 838-45. doi: 10.1002/ana.22537
- Russo A, Tessitore A, Giordano A. et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia 2012; 32 (14): 1041-8. doi: 10.1177/0333102412457089
- Russo A, Conte F, Marcuccio L. et al. Abnormal connectivity within executive resting-state network in migraine with aura. J Headache Pain 2015; 16 (Suppl. 1): A156. doi: 10.1186/1129-2377-16-s1-a156
- Schulte L.H, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016; 139 (7): 1987-93. doi: 10.1093/brain/aww097
- Schulte L.H, May A. Of generators, networks and migraine attacks. Curr Opin Neurol 2017; 30 (3): 241-5. doi: 10.1097/wco.0000000000000441
- Schwedt T.J, Schlaggar B.L., Mar S. et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 2013; 53 (5): 737-51. doi: 10.1111/head.12081
- Schwedt T.J, Larson-Prior L, Coalson R.S. et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 2014; 15 (1): 154-65. doi: 10.1111/pme.12267
- Tessitore A, Russo A, Conte F. et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache: The Journal of Head and Face Pain 2015; 55 (6) : 794-805. doi: 10.1111/head.12587
- Wang T, Chen N, Zhan W.et al. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: a resting-state fMRI study with granger causality analysis. J Headache Pain 2016; 17 (1): 17-27. doi: 10.1186/s10194-016-0610-4
- Farago P, Tuka B, Toth E. et al. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18 (1): 8-16. doi: 10.1186/s10194- 016-0716-8
- Park S-P, Seo J-G, Lee W-K. Osmophobia and allodynia are critical factors for suicidality in patients with migraine. J Headache Pain 2015; 16 (1): 44-9. doi: 10.1186/s10194-015-0529-1
- Szabo N, Kincses Z.T, Pardutz A. et al. White matter disintegration in cluster headache. J Headache Pain 2013; 14 (1): 64-9. doi: 10.1186/1129-2377-14-64
- Seifert C.L., Magon S., Staehle K. et al. A case-control study on cortical thickness in episodic cluster headache. Headache 2012; 52 (9): 1362-8. doi: 10.1111/j.1526- 4610.2012.02217.x
- Naegel S, Holle D, Desmarattes N. et al. Cortical plasticity in episodic and chronic cluster headache. NeuroImage: Clinical 2014; 6: 415-23. doi: 10.1016/j.nicl.2014.10.003
- Chiapparini L, Ferraro S, Nigri A. et al. Resting state fMRI in cluster headache: which role? Neurol Sci 2015; 36 (Suppl. 1): S47-S50. doi: 10.1007/s10072-015-2129-x
- Kiraly A, Szabo N, Pardutz A. et al. Macro-and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia 2017: 033310241770376. doi: 10.1177/0333102417703762
- Farago P, Szabo N, Toth E. et al. Ipsilateral alteration of resting state activity suggests that cortical dysfunction contributes to the pathogenesis of cluster headache. Brain Topography 2016; 30 (2): 281-9. doi: 10.1007/s10548-016-0535-x
- Tepper D. Medication overuse headache. Headache 2017; 57 (5): 845-6. doi: 10.1111/head.13034
- Chen Z, Chen X, Liu M et al. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J Headache Pain 2017; 18 (1): 1-9. doi: 10.1186/s10194-017-0735-0
- Schwedt T.J, Chong C.D. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache 2017. doi: 10.1111/he- ad.13037
- Torta D.M, Costa T, Luda E. et al. Nucleus accumbens functional connectivity discriminates medication-overuse headache. NeuroImage: Clinical 2016; 11: 686-93. doi: 10.1016/j.nicl.2016.05.007
- Meyer M, Di Scala G, Edde M. et al. Brain structural investigation and hippocampal tractography in medication overuse headache: a native space analysis. Behav Brain Functions 2017; 13 (6): 1-9. doi: 10.1186/s12993-017-0124-5
- Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain 1991; 47 (2): 145-9. doi: 10.1016/0304- 3959(91)90198-7
- Olesen J, Jensen R. Getting away from simple muscle contraction as a mechanism of tension-type headache. Pain 1991; 46 (2): 123-4. doi: 10.1016/0304-3959(91)90065-6
- Yu S, Han X. Update of chronic tension-type headache. Curr Pain Headache Rep 2014; 19 (1): 469-76. doi: 10.1007/s11916-014-0469-5
- Chen B, He Y, Xia L et al. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache. J Headache Pain 2016; 17 (1): 105-10. doi: 10.1186/s10194-016-0698-6
- Pijnenburg M, Brumagne S, Caeyenberghs K. et al. Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connectivity 2015; 5 (5): 303-11. doi: 10.1089/brain.2014.0309
- Pijnenburg M, Hosseini S.M.H, Brumagne S. et al. Structural brain connectivity and the sit- to-stand-to-sit performance in individuals with nonspecific low back pain: a diffusion magnetic resonance imaging-based network analysis. Brain Connectivity 2016; 6 (10): 795-803. doi: 10.1089/brain.2015.0401
- Zhang S, Wu W, Huang G. et al. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regeneration Research 2014; 9 (2): 135-42. doi: 10.4103/1673-5374.125341
- Letzen J.E, Robinson M.E. Negative mood influences default mode network functional connectivity in patients with chronic low back pain. Pain 2017; 158 (1): 48-57. doi: 10.1097/j.pain.0000000000000708
- Apkarian A.V, Sosa Y, Sonty S. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24 (46): 10410-5. doi: 10.1523/jneurosci.2541-04.2004
- Yuan C.H, Shi H.C, Pan P.L. et al. Gray matter abnormalities associated with chronic back pain. Clin J Pain 2017; p. 1-25. doi: 10.1097/ajp.0000000000000489
- Fritz H.-C, McAuley J.H, Wittfeld K. et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter. Results from a population-based cohort study. J Pain 2016; 17 (1): 111-8. doi: 10.1016/j.jpain.2015.10.003
- Kolesar T.A., Bilevicius E., Kornelsen J. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scand J Pain 2017; 16: 10-4. doi: 10.1016/j.sjpain.2017.01.008
- Kornelsen J, Sboto-Frankenstein U, McIver T. et al. Default mode network functional connectivity altered in failed back surgery syndrome. J Pain 2013; 14 (5): 483-91. doi: 10.1016/j.jpain.2012.12.018
- Yoon M-S, Manack A, Schramm S. et al. Chronic migraine and chronic tension-type headache are associated with concomitant low back pain: Results of the German Headache Consortium study. Pain 2013; 154 (3): 484-92. doi: 10.1016/j.pain.2012.12.010
- Sevel L.S, Letzen J.E, Staud R, Robinson M.E. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connectivity 2016; 6 (5): 357-64. doi: 10.1089/brain.2015.0405
- Rehme A.K, Eickhoff S.B, Grefkes C. State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 2013; 67: 237-46. doi: 10.1016/j.neuroimage.2012.11.027
- Bringmann L.F, Scholte H.S, Waldorp L.J. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs. Brain Connectivity 2013; 3 (4): 375-85. doi: 10.1089/brain.2012.0130
- Mears D, Pollard H.B. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J Neurosci Res 2016; 94 (6): 590-605. doi: 10.1002/jnr.23705
- Iannetti G.D, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res 2010; 205 (1): 1-12. doi: 10.1007/s00221-010-2340-1
- Legrain V, Iannetti G.D, Plaghki L, Mouraux A. The pain matrix reloaded. A salience detection system for the body. Progress Neurobiol 2011; 93 (1): 111-24. doi: 10.1016/j.pneurobio.2010.10.005
- Mouraux A, Diukova A, Lee M.C. et al. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage 2011; 54 (3): 2237-49. doi: 10.1016/j.neuroi- mage.2010.09.084
- Iannetti G.D, Mouraux A. Can the functional MRI responses to physical pain really tell us why social rejection "hurts"? Proceedings of the National Academy of Sciences 2011; 108 (30): E343-E343. doi: 10.1073/pnas.1105451108
- Takagi K. A distribution model of functional connectome based on criticality and energy constraints. PLoS ONE 2017; 12 (5): e0177446. doi: 10.1371/journal.pone.0177446
Дополнительные файлы
