Development of methods of adaptation of gas-diesel engines of agricultural tractors to operation using LPG
- Authors: Godzhaev Z.A.1, Uyutov S.Y.1, Ovchinnikov E.V.1
-
Affiliations:
- Federal Scientific Agroengineering Center VIM
- Issue: Vol 18, No 2 (2024)
- Pages: 83-92
- Section: Heat engines
- URL: https://ogarev-online.ru/2074-0530/article/view/268199
- DOI: https://doi.org/10.17816/2074-0530-624202
- ID: 268199
Cite item
Full Text
Abstract
BACKGROUND: The methods of ensuring detonation-free combustion of liquefied petroleum gases (propane-butane mixtures) (LPG) in a cylinder of the gas-diesel engine with an ignition dose of no more than 25%, at maximal power modes are covered in this paper. Addition of a part of the exhaust gases and vaporous water to the fuel mixture, when using a nickel-based catalyst in the combustion chamber of the gas-diesel engine, which triggers the conversion reaction of lower alkanes, ensures reliable detonation-free combustion of the fuel charge.
AIM: Conducting the analysis of studies on the oxidative conversion of lower alkanes in the presence of nickel catalysts with the development of technical solutions to eliminate detonation in all operating modes. Conducting the research to improve system reliability, to optimize the supply of diesel and gaseous fuel for fuel efficiency improvement and reduction of harmful emissions from exhaust gases when turning the diesel engine into the gas-diesel engine.
METHODS: A nickel catalyst, which is an oxygen carrier, ensures cyclical reactions near its surface in the combustion chamber of the gas-diesel engine, which are metal oxidation when purging the combustion chamber and conversion of alkanes during the compression and combustion strokes. The problem of catalyst carburization is solved by burning off deposits during combustion of the fuel charge.
RESULTS: The preparation of a fuel steam-gas-air mixture with subsequent combustion in the presence of a catalyst ensures improved environmental, fuel consumption characteristics of the gas-diesel engine over the entire range of operating conditions and increases its reliability without detonation combustion of liquefied petroleum gases.
CONCLUSION: The use of the proposed system in diesel engines used in tractors aimed to agricultural technological operations helps to reduce fuel costs by more than 38%.
Full Text
##article.viewOnOriginalSite##About the authors
Zakhid A. Godzhaev
Federal Scientific Agroengineering Center VIM
Email: fic51@mail.ru
ORCID iD: 0000-0002-1665-3730
SPIN-code: 1892-8405
Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Engineering), Deputy Director for Innovational and Implemental Activities
Russian Federation, MoscowSergey Yu. Uyutov
Federal Scientific Agroengineering Center VIM
Author for correspondence.
Email: s_uyutov@mail.ru
ORCID iD: 0000-0001-9394-5916
SPIN-code: 7350-1489
Junior Researcher of the Automated Drive of Agricultural Machinery Laboratory 2.2
Russian Federation, MoscowEvgeniy V. Ovchinnikov
Federal Scientific Agroengineering Center VIM
Email: vim@vim.ru
ORCID iD: 0000-0002-6942-5950
SPIN-code: 4972-8390
Researcher of the Laboratory 4.1
Russian Federation, MoscowReferences
- Ashok B, Ashok SD, Kumar CR. LPG diesel dual fuel engine — A critical review. Alexandria Engineering Journal. 2015;54(2):105–126. doi: 10.1016/j.aej.2015.03.002
- Frolov VN, Garanin IV. Experimental studies of detonation initiation and ra modes-bots of the pulsating detonation engine camera model. Proceedings of MAI. 2010;38. (In Russ). EDN: MQPNWB
- Mamaev A, Kislenko N, Snezhko D. Vehicles powered by liquefied petroleum gas — development prospects. Gas station complex + Alternative fuel. 2003;(4(10)):6–12. (In Russ). EDN: JIYGBX
- Uyutov SYu, Gojaev ZA. The use of liquefied petroleum gas as fuel in tractor diesel engines / S. Yu. Uyutov. Tractors and agricultural machinery. 2022;89(6):387–393. (In Russ). doi: 10.17816/0321-4443-123187
- Tretyakova SG, Rastunova IL, Rozenkevich MB. Investigation of the possibility of using the sabatier reaction as a method of flow reversal for isotope exchange in the carbon dioxide-water system. Uspechi in chemistry and chemical technology. 2008;22:70–75. (In Russ). EDN: QZVPOX
- Dyachenko VG. Teoriya dvigateley vnutrennego sgoraniya. Kharkov: NTU «KhPI»; 2009. (In Russ).
- Patent RUS 2259429 / 27.08.2005. Byul. 24. Simunova S.S., Ershova T.V. Elektrolit i sposob nikelirovaniya izdeliy iz alyuminiya i ego splavov. (In Russ). EDN: UKRGHA
- Gaynullin F.G., Grishchenko A.I., Vasilyev Yu.N., Zolotarevskiy L.S. Prirodnyy gaz kak motornoe toplivo na transporte. M.: Nedra, 1986. (In Russ).
- Fedin K. Innovative technology for creating gas piston engines with spark ignition. Information resources of Russia. 2012;2. (In Russ). EDN: OXASAJ
- Patent RUS № 2700866 / 23.09.2019. Byul. 27. Savelyev GS, Kochetkov MN, Ovchinnikov EV, et al. Sposob organizatsii rabochego protsessa gazodizelnogo dvigatelya. EDN: ONZNAJ
- Usachev NYa, Kharlamov VV, Belanova EP, et al. Oxidative processing of lower alkanes: state and prospects. Rossiyskiy khimicheskiy zhurnal. Vol. LII. No. 4. 2008. (In Russ).
- Krylov O.V. Carbon dioxide conversion of methane into synthesis gas. M.: J. Russian Chemical. The D.I. Mendeleev Society. 2000. Vol. XLIV. No. 1. pp. 19–33. (In Russ).
- Patent Canada CA2811937C / 29.03.2012. Palmer MR, Allam RJ, Fetvedt JE. et al. Method of using carbon dioxide in recovery of formation deposits. Accessed: Available from: https://patentimages.storage.googleapis.com/25/2d/f5/09fe81942f06e3/CA2811937C.pdf
- Asachenko EV, Rodina OV. Osobennosti dezaktivatsii kislotnykh Zn — soderzhashchikh katalizatorov aromatizatsii propane. Neftekhimiya. 2008;48(2):100–104.
- Tagirova LM. Aktualnost primeneniya sintez-gaza v kachestve alternativnogo istochnika energii. Aktualnye nauchnye issledovaniya v sovremennom mire. 2017. № 2-1. S. 133–137. EDN: XXVJQR
- Kudryashova EYu. Usovershenstvovanie i primenenie kataliticheskikh neytralizatorov otrabotavshikh gazov dlya uluchsheniya ekologicheskikh kharakteristik dizelnykh dvigateley [dissertation] Moscow; 2017.
- Wang Chizhang, Yang Shijian, Chang Huazhen, et al. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A: Chemical. 2013;376:13–21. doi: 10.1016/j.molcata.2013.04.008
- Stanciulescu M, Caravaggio G, Dobri A, et al. Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts. Applied Catalysis B: Environmental. 2012;123–124:229–240. doi: 10.1016/j.apcatb.2012.04.012
- Wu ZB, Jiang BQ, Liu Y, Wang H, Jin R. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environmental Science & Technology. 2007. Vol. 41, N 16. P. 5812–5817. doi: 10.1021/es0700350
- Kuvshinov GG, Popov MV, Tonkodubov SE, Kuvshinov DG. Vliyanie davleniya na effektivnost nikelevykh i nikel-mednykh katalizatorov v protsesse razlozheniya metana. Zhurnal prikladnoy khimii. 2016;89(11):1407–1416.
- Golosman EZ. Efremov VN. Promyshlennye katalizatory gidrirovaniya oksidov ugleroda. Kataliz v promyshlennosti. 2012. №5. C. 36–55.
- Kovalevskaya LL, Dorofeeva EA. Issledovanie vliyaniya usloviy termoobrabotki na dezaktivatsiyu katalizatorov konversii uglevodorodov. In: Innovatsionnye protsessy v khimii, neftekhimii i neftepererabotke. Sbornik trudov mezhdunarodnoy konferentsii. Sankt Petersburg: SPbGTI(TU); 2016:16–18.
- Izmaylov AYu, Savelyev GS, Kochetkov MN, et al. Avtotraktornyy dizelnyy dvigatel, adaptirovannyy k rabote na szhizhennom uglevodorodnom gaze po gazodizelnomu protsessu. Izvestiya MGTU MAMI. 2018;1(35):10–15. EDN: YSSQLA
Supplementary files
