On some properties of randomized machine learning procedures in the presence of noisy data
- Autores: Popkov Y.S.1
-
Afiliações:
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
- Edição: Nº 2 (2023)
- Páginas: 89-95
- Seção: Mathematical modeling
- URL: https://ogarev-online.ru/2071-8632/article/view/286539
- DOI: https://doi.org/10.14357/20718632230209
- ID: 286539
Citar
Resumo
We study various models of measuring noises in the procedures of randomized entropy estimation of probability density functions: additive and multiplicative, measuring noises at the input and output of the object’s model. The properties of entropy-optimal probability density functions are studied, it is shown that the measurement noises corresponding to them are heteroscedastic.
Palavras-chave
Sobre autores
Y. Popkov
Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
Autor responsável pela correspondência
Email: popkov@isa.ru
Federal Reearch Center “Computer Science and Control” of Russian Academy of Sciences, chief research scientist; Member of RAS, Doctor of Science in Engineering, professor; Institute of Control Sciences of Russian Academy of Sciences, chief research scientist. Scientific area: entropy methods, macrosystems, randomized machine learning
Rússia, MoscowBibliografia
- Popkov Yu.S., Popkov A.Yu., Dubnov Yu.A. Entropy Randomization in Mashine Learning, 2023, CRC Press, Taylor & Francis Group.
- Shannon C.E. Mathematical Theory of Communication. 1948, The Bell System Technical Journal, v.27, p.373- 423, 623-656.
- Jaynes E.T. Information theory and statistical Mechanics. Physical Review, 1957, v.104(4), p.620-630.
- Jaynes E.T. Gibbs vs Boltzmann entropy. American Journal of Physics, 1965, v.33, p.391-398.
- Rosenkrantz R.D., Jaynes E.T. Paper on Probability, Statistics,and Statistical Physics. Kluwer Academic Pablishers, 1989.
- Popkov Yu.S. Qualitative Properties of Random Maximum Entropy Estimates of Probability Density Functions. Mathematics, 2021, 9, 548, doi.org/10.3390/math9050548.
- Bollerslev T., Engle R.F., Nelson D.B. ARCH Models. In: Engle R.F. and McFadden D.C.,eds. Handbook of Econometrics, 1994, Elsevier Science, Amsterdam, p.2961-3038.
- Cai T.T., Wang L. Adaptive variance function estimation in heteroscedastic nonparametric regression. Ann. Stat., 2008, v. 36(5), p. 2025-2054, doi: 10.1214/07-AOS509.
- Oreshko N.I. Vosstanovlenie zakona heteroskedaticheskogo shuma pri traektornikh izmereniah na osnove veivlet-tehnologiy // Izvestia SPbLETU “LETI”, 2013, No. 9, pp. 16-21.
Arquivos suplementares
