Прогнозирование аэродинамических коэффициентов на закручивающиеся формообразующие зданий и сооружений на базе машинного обучения и CFD-моделирования

Обложка

Цитировать

Полный текст

Аннотация

Введение. Проведены исследования по применению машинного обучения с целью прогнозирования аэродинамических коэффициентов на закручивающиеся формообразующие зданий и сооружений. Для обучения использовались данные аэродинамических продувок на базе численного моделирования в ANSYS CFX. Оценивалось качество прогнозов различных моделей машинного обучения по сравнению с численным моделированием. Сделаны выводы, относящиеся к использованию моделей машинного обучения для определения ветровых нагрузок на здания и сооружения.Материалы и методы. Для анализа полученных результатов и разработки модели машинного обучения применялись язык программирования Python и библиотеки: Pandas, NumPy, Scikit-learn и Matplotlib. Рассматривались четыре метода машинного обучения: линейная регрессия, решающее дерево, метод k-ближайших соседей, случайный лес. Для формирования обучающих данных использовались аэродинамические продувки на основе методов численного моделирования в ANSYS CFX. Точность различных моделей машинного обучения в прогнозировании аэродинамических коэффициентов оценивалась на основе статистической меры соответствия R-квадрат.Результаты. Составлена база из 217 численных решений для различных углов закручивания формообразующей здания. Эти результаты включают распределение аэродинамических коэффициентов давления по поверхности здания, а также аэродинамические коэффициенты сил и моментов (Cx, Cy, CMz) в зависимости от высоты. Данные использовались для обучения четырех моделей машинного обучения. Для лучшей модели машинного обучения (случайный лес) проведена верификация модели в сравнении с результатами численного моделирования.Выводы. Исследованы различные модели машинного обучения для прогнозирования аэродинамических коэффициентов на здания и сооружения. Сделаны выводы о применимости методов машинного обучения в качестве альтернативного подхода к определению ветровых нагрузок.

Об авторах

С. Г. Саиян

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: Berformert@gmail.com
ORCID iD: 0000-0003-0694-4865

В. Б. Шелепина

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: veronika.shel@mail.ru

Список литературы

  1. Mooneghi M.A., Kargarmoakhar R. Aerodynamic mitigation and shape optimization of buildings : review // Journal of Building Engineering. 2016. Vol. 6. Pp. 225–235. doi: 10.1016/j.jobe.2016.01.009
  2. Stathopoulos T., Alrawashdeh H. Wind loads on buildings: A code of practice perspective // Journal of Wind Engineering and Industrial Aerodynamics. 2020. Vol. 206. P. 104338. doi: 10.1016/j.jweia.2020.104338
  3. Сатанов А.А., Васин А.Д. Экспериментальное исследование распределения ветрового давления на высотное здание уникальной формы // Приволжский научный журнал. 2021. № 3 (59). С. 38–46. EDN AANDEZ.
  4. Егорычев О.О., Чурин П.С. Экспериментальное исследование ветровых нагрузок на высотные здания // Жилищное строительство. 2015. № 6. С. 20–22. EDN TZVIWT.
  5. Saiyan S., Andreev V., Paushkin A. Numerical simulation of accelerations of the upper floors of a high-rise building under wind influence // Lecture Notes in Civil Engineering. 2022. Pp. 269–279. doi: 10.1007/978-3-031-10853-2_25
  6. Belostotsky A., Afanasyeva I., Negrozova I., Goryachevsky O. Simulation of aerodynamic instability of building structures on the example of a bridge section. Part 2: Solution of the problem in a coupled aeroelastic formulation and comparison with engineering estimates // International Journal for Computational Civil and Structural Engineering. 2021. Vol. 17. Issue 3. Pp. 24–38. doi: 10.22337/2587-9618-2021-17-3-24-38
  7. Zheng X., Montazeri H., Blocken B. CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES // Building and Environment. 2020. Vol. 173. P. 106747. doi: 10.1016/j.buildenv.2020.106747
  8. Rezaeiha A., Montazeri H., Blocken B. On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines // Energy. 2019. Vol. 180. Pp. 838–857. doi: 10.1016/j.energy.2019.05.053
  9. Дубинский С.И. Численное моделирование ветровых воздействий на высотные здания и комплексы : дис. … канд. тех. наук. М. : МГСУ, 2010. 198 с. EDN QEVMND.
  10. Белостоцкий А.М., Акимов П.А., Афанасьева И.Н. Вычислительная аэродинамика в задачах строительства : учебное пособие. М. : АСВ, 2017. 720 с.
  11. Zhang F.L., Xiong H.B., Shi W.X., Ou X. Structural Health Monitoring of shanghai tower during different stages using a Bayesian approach // Structural Control and Health Monitoring. 2016. Vol. 23. Issue 11. Pp. 1366–1384. doi: 10.1002/stc.1840
  12. Lapin V.A., Yerzhanov S.Y., Makish N.K. Monitoring the behavior of a high-rise building under wind loads // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 953. Issue 1. P. 012087. doi: 10.1088/1757-899X/953/1/012087
  13. Колчин В.Н. Специфика применения технологии «искусственного интеллекта» в строительстве // Инновации и инвестиции. 2022. № 3. С. 250–253. EDN JJLECU.
  14. Málaga-Chuquitaype C. Machine learning in structural design : an opinionated review // Frontiers in Built Environment. 2022. Vol. 8. doi: 10.3389/fbuil.2022.815717
  15. Sun H., Burton H.V., Huang H. Machine learning applications for building structural design and performance assessment : state-of-the-art review // Journal of Building Engineering. 2021. Vol. 33. P. 101816. doi: 10.1016/j.jobe.2020.101816
  16. Nguyen P.T. Application machine learning in construction management // TEM Journal. 2021. Pp. 1385–1389. doi: 10.18421/tem103-48
  17. Lee J., Lee S. Construction site safety management: A computer vision and deep learning approach // Sensors. 2023. Vol. 23. Issue 2. P. 944. doi: 10.3390/s23020944
  18. Gomez-Cabrera A., Escamilla-Ambrosio P.J. Review of machine-learning techniques applied to structural health monitoring systems for building and bridge structures // Applied Sciences. 2022. Vol. 12. Issue 21. P. 10754. doi: 10.3390/app122110754
  19. Wu T., Snaiki R. Applications of machine learning to wind engineering // Frontiers in Built Environment. 2022. Vol. 8. doi: 10.3389/fbuil.2022.811460
  20. Li J., Du X., Martins J.R.R.A. Machine learning in aerodynamic shape optimization // Progress in Aerospace Sciences. 2022. Vol. 134. P. 100849. doi: 10.1016/j.paerosci.2022.100849
  21. Peng W., Zhang Y., Laurendeau E., Desmarais M.C. Learning aerodynamics with neural network // Scientific Reports. 2022. Vol. 12. Issue 1. doi: 10.1038/s41598-022-10737-4
  22. Ahmed S., Kamal K., Ratlamwala T.A., Mathavan S., Hussain G., Alkahtani M. et al. Aerodynamic analyses of airfoils using machine learning as an alternative to RANS simulation // Applied Sciences. 2022. Vol. 12. Issue 10. P. 5194. doi: 10.3390/app12105194
  23. Zan B.W., Han Z.H., Xu C.Z., Liu M.Q., Wang W.Z. High-dimensional aerodynamic data modeling using a machine learning method based on a convolutional neural network // Advances in Aerodynamics. 2022. Vol. 4. Issue 1. doi: 10.1186/s42774-022-00128-8
  24. Yang B. Wind engineering for high-rise buildings : a review // Wind and Structures. 2021. Vol. 32. Issue 3. Pp. 249–265. doi: 10.12989/was.2021.32.3.249
  25. Sarker I.H. Machine learning: algorithms, real-world applications and research directions // SN Computer Science. 2021. Vol. 2. Issue 3. doi: 10.1007/s42979-021-00592-x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).