Механика процесса ППД. Остаточные напряжения в упрочняемом упруго-пластическом теле

Обложка

Цитировать

Полный текст

Аннотация

Введение. Остаточные напряжения (ОН) первого рода являются одним из ключевых параметров механического состояния металла, который в значительной степени определяет эксплуатационную долговечность изделий и конструкций. Упрочняющая обработка поверхностным пластическим деформированием (ППД) создает в поверхностном слое (ПС) благоприятные сжимающие ОН и существенно повышает усталостную долговечность как до, так и после появления усталостной трещины. В этой области знаний остается актуальной проблема высокой сложности и трудоемкости экспериментального определения ОН, а также проблема расчета остаточных напряжений при сложных немонотонных видах нагружения, к которым относится большинство способов механической обработки. Цель работы: развитие теории формирования и повышение достоверности расчетов остаточных напряжений при обработке ППД на основе модели упрочняемого упругопластического тела. Результаты и обсуждение. В работе представлены результаты моделирования и выполнены расчеты компонентов тензора ОН в процессе ППД. Модель выполнена с помощью метода конечных элементов на основе концептуального аппарата механики технологического наследования (ТН) с учетом эффекта упрочняемого тела. Установлено, что наибольшие значения сжимающих остаточных напряжений характерны для осевого компонента, при этом экстремум может располагаться как на поверхности детали, так и на некотором удалении от нее. Глубина распространения сжимающих остаточных напряжений составляет примерно 3 мм при глубине распространения существенных по величине напряжений около 7 мм. Выявлено влияние упрочнения металла на распределение остаточных напряжений. На примере осевого (наибольшего по величине) компонента показано, что разница максимальных значений составляет почти 30 %. Полученный результат соответствует представлениям о том, что упрочненный металл, имеющий повышенный предел текучести, допускает присутствие больших по величине ОН. Выявлены тенденции изменения распределения компонентов тензора ОН по глубине ПС в зависимости от основных параметров режима обработки ППД: натяга и профильного радиуса ролика.

Об авторах

М. С. Махалов

Email: maxim_ste@mail.ru
кандидат технических наук, доцент, Кузбасский государственный технический университет им. Т.Ф. Горбачёва, ул. Весенняя, 28, г. Кемерово, 650000, Россия, maxim_ste@mail.ru

В. Ю. Блюменштейн

Email: blumenstein@rambler.ru
доктор технических наук, профессор, Кузбасский государственный технический университет им. Т.Ф. Горбачёва, ул. Весенняя, 28, г. Кемерово, 650000, Россия, blumenstein@rambler.ru

Список литературы

  1. Технология и инструменты отделочно-упрочняющей обработки деталей поверхностным пластическим деформированием. В 2 т. Т. 2. / А.Г. Суслов, А.П. Бабичев, А.В. Киричек, А.В. Овсеенко, П.Д. Мотренко, С.К. Амбросимов, А.И. Афонин, Р.В. Гуров, А.Н. Прокофьев, Д.А. Соловьев; под общ. ред. А.Г. Суслова. – М.: Машиностроение, 2014. – 444 с. – ISBN 978-5-94275-711-3.
  2. Иванов С.И., Павлов В.Ф. Влияние остаточных напряжений и наклепа на усталостную прочность // Проблемы прочности. – 1976. – № 5. – С. 25–27.
  3. Introduction of enhanced compressive residual stress profiles in aerospace components using combined mechanical surface treatments / A. Gopinath, A. Lim, B. Nagarajan, C.C. Wong, R. Maiti, S. Castagne // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 157 (1). – doi: 10.1088/1757-899X/157/1/012013.
  4. Овсеенко А.Н., Gajek M., Серебряков В.И. Формирование состояния поверхностного слоя деталей машин технологическими методами. – Opole: Politechnika Opolska, 2001. – 228 с. – ISBN 83-88492-06-3.
  5. Биргер И.А. Остаточные напряжения. – М.: Машгиз, 1963. – 232 с.
  6. Кудрявцев И.В. Внутренние напряжения как резерв прочности в машиностроении. – М.: Машгиз, 1951. – 280 с.
  7. Технологические остаточные напряжения / под. ред. А.В. Подзея. – М.: Машиностроение, 1973. – 216 с.
  8. Qin W.J., Dong C., Li X. Assessment of bending fatigue strength of crankshaft sections with consideration of quenching residual stress // Journal of Materials Engineering and Performance. – 2016. – Vol. 25, iss. 3. – P. 938–947. – doi: 10.1007/s11665-016-1890-1.
  9. Смелянский В.М. Механика упрочнения деталей поверхностным пластическим деформированием. – М.: Машиностроение, 2002. – 300 с. – ISBN 5-217-03065-8.
  10. Блюменштейн В.Ю., Смелянский В.М. Механика технологического наследования на стадиях обработки и эксплуатации деталей машин. – М.: Машиностроение-1, 2007. – 400 с. – ISBN 5-942-75342-9.
  11. Блюменштейн В.Ю., Махалов М.С. Расчетно-аналитическая модель механического состояния поверхностного слоя упрочненной детали на стадии циклического нагружения после обработки размерным совмещенным обкатыванием // Упрочняющие технологии и покрытия. – 2009. – № 3. – С. 33–39.
  12. Sadasivam B., Hizal A., Arola D. Abrasive waterjet peening with elastic prestress: subsurface residual stress distribution // ASME International Mechanical Engineering Congress and Exposition, IMECE 2007 Conference Paper. – Seattle, WA, 2007. – Vol. 3. – doi: 10.1115/IMECE2007-43473.
  13. Saini S., Ahuja I.S., Sharma V.S. Modeling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65, iss. 5–8. – P. 667–678. – doi: 10.1007/s00170-012-4206-0.
  14. A method to estimate residual stress in austenitic stainless steel using a microindentation test / A. Yonezu, R. Kusano, T. Hiyoshi, Xi Chen // Journal of Materials Engineering and Performance. – 2015. – Vol. 24, iss. 1. – P. 362–372. – doi: 10.1007/s11665-014-1280-5.
  15. Energy criteria for machining-induced residual stresses in face milling and their relation with cutting power / Y. Ma, P. Feng, J. Zhang, Z. Wu, D. Yu // The International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 81. – P. 1023–1032. – doi: 10.1007/s00170-015-7278-9.
  16. Huang X., Sun J., Li J. Finite element simulation and experimental investigation on the residual stress-related monolithic component deformation // The International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 77. – P. 1035–1041. – doi: 10.1007/s00170-014-6533-9.
  17. Modeling of residual stresses in milling / J.-C. Su, K.A. Young, K. Ma, S. Srivatsa, J.B. Morehouse, S.Y. Liang // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65. – P. 717–733. – doi: 10.1007/s00170-012-4211-3.
  18. Ji X., Zhang X., Liang S. Predictive modeling of residual stress in minimum quantity lubrication machining // The International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 70. – P. 2159–2168. – doi: 10.1007/s00170-013-5439-2.
  19. Martell J., Liu C., Shi J. Experimental investigation on variation of machined residual stresses by turning and grinding of hardened AISI 1053 steel // The International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 74, iss. 9–12. – P. 1381–1392. – doi: 10.1007/s00170-014-6089-8.
  20. Chen J., Fang Q., Zhang L. Investigate on distribution and scatter of surface residual stress in ultra-high speed grinding // The International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 75. – P. 615–627. – doi: 10.1007/s00170-014-6128-5.
  21. Altan T. Finite element modeling of roller burnishing process // Manufacturing Technology. – 2017. – Vol. 54 (1). – P. 237–240.
  22. Махалов М.С., Блюменштейн В.Ю. Механика процесса поверхностного пластического деформирования. Модель упрочняемого упругопластического тела // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 4. – С. 6–20. – doi: 10.17212/1994-6309-2018-20.4-6-20.
  23. Blumenstein V.Yu., Mahalov M.S., Ostanin O.A. Simulation and calculation of residual stresses in mining machines components // E3S Web Conferences, IIIrd International Innovative Mining Symposium. – 2018. – Vol. 41. – Art. 03012. – doi: 10.1051/e3sconf/20184103012.
  24. Папшев Д.Д. Упрочнение деталей обкаткой шариками. – М.: Машиностроение, 1968. – 132 с.
  25. Блюменштейн В.Ю., Махалов М.С. Расчетная модель остаточных напряжений упрочненного поверхностного слоя при размерном совмещенном обкатывании // Вестник КузГТУ. – 2008. – № 5. – С. 50–58.
  26. Sayahi M., Sghaier S., Belhadjsalah H. Finite element analysis of ball burnishing process: comparisons between numerical results and experiments // The International Journal of Advanced Manufacturing Technology. – 2012. – Vol. 67 (5). – P. 1665–1673. – doi: 10.1007/s00170-012-4599-9.
  27. Смелянский В.М., Чоудхури Н.А. К вопросу прогнозирования остаточных напряжений, возникающих в поверхностных слоях деталей при обработке ППД // Совершенствование процессов обработки и сборки деталей автомобиля в условиях применения гибких автоматизированных комплексов: межвузовский сборник. – М.: МАМИ, 1987. – С. 3–16.
  28. Смелянский В.М., Шапарин А.А., Чоудхури Н.А. Численная модель формирования остаточных напряжений в поверхностном слое деталей при обкатывании // Остаточные напряжения – резерв прочности в машиностроении: тезисы докладов Всесоюзной научно-технической конференции. – Ростов н/Д., 1991. – С. 7–9.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».