Многофазные покрытия Cu-Ti, полученные вакуумно-дуговым плазменно-ассистированным методом на медно-бериллиевом сплаве С17200

Обложка

Цитировать

Полный текст

Аннотация

Введение. Для улучшения эксплуатационных свойств медно-бериллиевого сплава применяют метод модифицирования поверхности путем нанесения твердых интерметаллических покрытий. Возможность метода ионно-плазменного легирования широко варьировать свойствами поверхностных слоев различных сплавов, в том числе на медной основе, позволяет успешно применять его и для получения износо- и коррозионностойких покрытий на деталях из бериллиевой бронзы, работающих в условиях трения в агрессивных средах. Наиболее перспективными в этом отношении являются многофазные и многокомпонентные функциональные твердые покрытия. Целью работы является анализ микроструктуры, фазового состава и трибологических свойств сплавов CuBe, модифицированных плазменно-активированными PVD-покрытиями на основе титана, с последующей разработкой эффективной технологии поверхностного инжиниринга и улучшения механических свойств сплавов CuBe. Методы. Методом вакуумно-дугового плазменно-ассистированного осаждения титана и меди на закаленную бронзу БрБ2 (сплав С17200) при температуре 320…330 °С были получены многофазные покрытия, которые по данным рентгенофазового анализа состоят из меди, титана и соединений CuTi, и CuTi2. Рентгеноструктурный анализ также показал, что в процессе ионно-плазменной обработки происходило старение медно-бериллиевого сплава с образованием частиц CuBe, что обеспечивало повышение твердости сплава. Результаты и обсуждение. Была изучена износостойкость бериллиевой бронзы с ионно-плазменными композиционным и градиентным покрытиями TiCu при трении скольжения. Износ образцов с покрытиями характеризовался растрескиванием и постепенным разрушением твердого поверхностного слоя с последующим изнашиванием основного медно-бериллиевого сплава. Износ подложки сопровождался отделением мелких частиц материала основы, в отличие от состаренного медно-бериллиевого сплава без покрытия, который изнашивался по адгезионному механизму с отделением крупных частиц износа. При температуре нанесения покрытий 320…330 °С их микротвердость оказалась достаточно высока и составила 530…540 HV0,02. Однако износостойкость покрытий оказалась невысокой, так как тонкие покрытия (не более 8 мкм) на относительно мягкой основе не выдерживают нагрузку 20 Н при испытаниях.

Об авторах

А. В. Колубаев

Email: kav@ispms.tsc.ru
доктор физ.-мат. наук, профессор, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия, kav@ispms.tsc.ru

О. В. Сизова

Email: ovs@ispms.tsc.ru
доктор техн. наук, профессор, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия, ovs@ispms.tsc.ru

Ю. А. Денисова

Email: yudenisova81@yandex.ru
канд. физ.-мат. наук, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия; 2. Институт сильноточной электроники СО РАН, пр. Академический, 2/3, г. Томск, 634055, Россия, yudenisova81@yandex.ru

А. А. Леонов

Email: laa@tpu.ru
Институт сильноточной электроники СО РАН, пр. Академический, 2/3, г. Томск, 634055, Россия, laa@tpu.ru

Н. В. Терюкалова

Email: natali.t.v@ispms.tsc.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия, natali.t.v@ispms.tsc.ru

А. В. Белый

Email: vmo@tut.by
доктор техн. наук, профессор, Белорусский национальный технический университет, пр. Независимости, 65, г. Минск, 220013, Республика Беларусь, vmo@tut.by

Список литературы

  1. Тебякин А.В., Фоканов А.Н., Подуражная В.Ф. Многофункциональные медные сплавы // Труды ВИАМ. – 2016. – № 12 (48). – С. 37–44. – doi: 10.18577/2307-6046-2016-0-12-5-5.
  2. Effects of cold working and heat treatment onmicrostructure and wear behaviour of Cu–Be alloyC17200 / A. Khodabakhshi, V. Abouei, N. Mortazavi, S.H. Razavi, H. Hooshyar, M. Esmaily // Tribology – Materials, Surfaces and Interfaces. – 2015. – Vol. 9, iss. 3. – P. 118–127. – doi: 10.1080/17515831.2015.1107257.
  3. Dry sliding wear of Cu-Be alloys / G. Straffelini, L. Maines, M. Pellizzari, P. Scardi // Wear. – 2005. – Vol. 259. – P. 506–511. – doi: 10.1016/j.wear.2004.11.013.
  4. Surface modification of C17200 copper-beryllium alloy by plasma nitriding of Cu-Ti gradient film / Y.D. Zhu, M.F. Yan, Y.X. Zhang, C.S. Zhang // Journal of Materials Engineering and Performance. – 2018. – Vol. 27, iss. 3. – P. 961–969. – doi: 10.1007/s11665-018-3190-4.
  5. Microstructure and mechanical properties of copper-titanium-nitrogen multiphase layers produced by a duplex treatment on C17200 copper-beryllium alloy / M.F. Yan, Y.D. Zhu, C.S. Zhang, Y.X. Zhang, Y.X. Wang, L. Yang // Materials and Design. – 2015. – Vol. 84. – P. 10–17. – doi: 10.1016/j.matdes.2015.06.130.
  6. High temperature plasma nitriding to modify Ti coated C17200 Cu surface: microstructure and tribological properties / Y.D. Zhu, J.W. Yao, M.F. Yan, Y.X. Zhang, Y.X. Wang, Y. Yang, L. Yang // Vacuum. – 2018. – Vol. 147. – P. 163–171. – doi: 10.1016/j.vacuum.2017.10.011.
  7. Improving wear resistance of pure copper by laser surface modification / M. Li, M. Chao, E. Liang, J. Yu, J. Zhang, D. Li // Applied Surface Science. – 2011. – Vol. 258. – P. 1599–1604. – doi: 10.1016/j.apsusc.2011.10.006.
  8. Improving the tribological behavior of copper through novel Ti–Cu intermetallic coatings / M.R. Bateni, F. Ashrafizadeh, J.A. Szpunar, R.A.L. Drew // Wear. – 2002. – Vol. 253. – P. 626–639. – doi: 10.1016/S0043-1648(02)00143-6.
  9. Сдвиговая пластическая деформация и износостойкость ионно-модифицированных материалов с твердыми слоями / А.В. Белый, В.А. Кукареко, В.Е. Рубцов, А.В. Колубаев // Физическая мезомеханика. – 2002. – Т. 5, № 1. – С. 51–57.
  10. Microstructure, adhesion and tribological properties of CrN/CrTiAlSiN/ WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel / Y. Li, Q. Ye, Y. Zhu, L. Zhang, Y. He, S. Zhang, J. Xiu // Surface and Coatings Technology. – 2019. – Vol. 362. – P. 27–34. – doi: 10.1016/j.surfcoat.2019.01.091.
  11. Huang X., Etsion I., Shao T. Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems // Wear. – 2015. – Vol. 338–339. – P. 54–61. – doi: 10.1016/j.wear.2015.05.016.
  12. Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates / X. Zhang, X.-B. Tian, Z.-W. Zhao, J.-B. Gao, Y.-W. Zhou, P. Gao, Y.-Y. Guo, Z. Lv // Surface and Coatings Technology. – 2019. – Vol. 364. – P. 135–143. – doi: 10.1016/j.surfcoat.2019.01.059.
  13. Kim G.S., Lee S.Y., Hahn J.H., Lee B.Y., Han J.G., Lee J.H., Lee S.Y. Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings // Surface and Coatings Technology. – 2003. – Vol. 171, Iss. 1–3. – P. 83–90. doi: 10.1016/S0257-8972(03)00243-3
  14. Microstructure and mechanical properties of multiphase layer formed during thermo-diffusing of titanium into the surface of C17200 copper–beryllium alloy / L. Yang, F.Y. Zhang, M.F. Yan, M.L. Zhang // Applied Surface Science – 2014. – Vol. 292. – P. 225–230. – doi: 10.1016/j.apsusc.2013.11.121.
  15. Wear resistance of TiN(Ti2N)/Ti composite layer formed on C17200 alloy / L. Liu, H.H. Shen, X.Z. Liu, Q. Guo, T.X. Meng, Z.X. Wang, H.J. Yang, X.P. Liu // Applied Surface Science. – 2016. – Vol. 388. – P. 103–108. – doi: 10.1016/j.apsusc.2016.03.059.
  16. Combining thermo-diffusing titanium and plasma nitriding to modify C61900 Cu-Al alloy / M.F. Yan, Y.D. Zhu, Y.X. Zhang, M.L. Zhang // Vacuum. – 2016. – Vol. 126. – P. 41–44. – doi: 10.1016/j.vacuum.2016.01.015.
  17. Corrosion behavior of TaC/Ta composite coatings on C17200 alloy by plasma surface alloying and CVD carburizing / W. Xi, W. Ding, S. Yu, N. Lin, T. Meng, Q. Guo, X. Liu, X. Liu // Surface and Coatings Technology. – 2019. – Vol. 359. – P. 426–432. – doi: 10.1016/j.surfcoat.2018.12.074.
  18. Plasma generation in a pulsed mode of a non-self-sustained arc discharge with a hybrid hot-and-hollow cathode / V.V. Denisov, Yu.Kh. Akhmadeev, N.N. Koval, S.S. Kovalskii, N.N. Pedin, V.V. Yakovlev // Russian Physics Journal. – 2019. – Vol. 62. – P. 541–546. – doi: 10.1007/s11182-019-01743-7.
  19. Основы конструирования и технологии производства радиоэлектронных средств. Интегральные схемы: учебник для бакалавриата и магистратуры / под ред. Ю.В. Гуляева. – М.: Юрайт, 2018. – 460 с. – ISBN 978-5-534-03170-6.
  20. The effect of microstructure on a beryllium bronze wear / O.V. Sizova, A.V. Kolubaev, A.V. Filippov, N.V. Teryukalova, Yu.A. Denisova // AIP Conference Proceedings. – 2019. – Vol. 2167, iss. 1. – P. 020338-1–020338-4. – doi: 10.1063/1.5132205.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».