Микроструктура и остаточные напряжения многослойных покрытий ZrN/CrN, полученных плазменно-ассистированным вакуумно-дуговым методом

Аннотация

Введение. Сегодняшнее состояние в области применения твердых покрытий нуждается в формировании наноструктурированных композиций с использованием различных химических элементов. Современные твердые покрытия способны сочетать в себе разные свойства, такие как высокая твердость, износостойкость, коррозионная стойкость. В настоящее время перспективными являются покрытия, полученные послойным нанесением нитридов циркония и хрома. При осаждении комбинаций химических элементов на различные подложки требуются исследования, направленные на изучение их микроструктуры и главным образом остаточных напряжений, сформированных при нанесении многослойных покрытий. Целью работы является исследование структурно-фазового состояния и остаточных напряжений покрытий системы ZrN/CrN, полученных плазменно-ассистированным вакуумно-дуговым методом из газовой фазы. Методика исследования. В работе исследованы образцы с покрытиями из нитридов циркония и хрома, нанесенными на подложки из твердого сплава ВК8. В работе используются такие методы исследований, как просвечивающая электронная микроскопия для изучения микроструктурных характеристик многослойных покрытий и рентгеноструктурный анализ для количественного определения остаточных напряжений I рода. Результаты и их обсуждение. На основании полученных экспериментальных результатов установлено, что изменение режимов нанесения многослойных покрытий ZrN/CrN в части скоростей вращения стола и подложкодержателя приводит к изменению микроструктуры, морфологии и внутренних напряжений поверхностных слоев многослойных покрытий. Показано, что при изменении условий нанесения слоев многослойного покрытия открываются возможности формирования покрытий ZrN/CrN на подложке из сплава ВК8 с наномасштабной толщиной слоев покрытия. Рентгеноструктурный анализ указывает в основном на несущественные напряжения, а при высокой скорости вращения стола и подложкодержателя на высокие сжимающие напряжения во многослойном покрытии. В ходе исследований просвечивающей электронной микроскопии установлено, что покрытия CrN и ZrN имеют общую текстуру роста многослойного покрытия при низких скоростях вращения, а при высоких скоростях наблюдается текстурная разориентировка фаз слоев покрытия. На основе полученных результатов можно рекомендовать покрытия системы ZrN/CrN в качестве твердых покрытий.

Об авторах

А. В. Воронцов

Email: vav@ispms.ru
канд. техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, vav@ispms.ru

А. В. Филиппов

Email: Andrey.V.Filippov@yandex.ru
канд. техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, Andrey.V.Filippov@yandex.ru

Н. Н. Шамарин

Email: shnn@ispms.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, shnn@ispms.ru

Е. Н. Москвичев

Email: em_tsu@mail.ru
канд. физ.-мат. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, em_tsu@mail.ru

О. С. Новицкая

Email: nos@ispms.tsc.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, nos@ispms.tsc.ru

Е. О. Княжев

Email: zhenya4825@gmail.com
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, zhenya4825@gmail.com

Ю. А. Денисова

Email: yukolubaeva@mail.ru
канд. физ.-мат. наук, Институт сильноточной электроники СО РАН, пр. Академический, 2/3, г. Томск, 634055, Россия, yukolubaeva@mail.ru

А. А. Леонов

Email: laa-91@yandex.ru
Институт сильноточной электроники СО РАН, пр. Академический, 2/3, г. Томск, 634055, Россия, laa-91@yandex.ru

В. В. Денисов

Email: volodyadenisov@yandex.ru
канд. техн. наук, Институт сильноточной электроники СО РАН, пр. Академический, 2/3, г. Томск, 634055, Россия, volodyadenisov@yandex.ru

Список литературы

  1. Fatigue properties of a 316L stainless steel coated with different ZrN deposits / J.A. Berríos-Ortíz, J.G. La Barbera-Sosa, D.G. Teer, E.S. Puchi-Cabrera // Surface and Coatings Technology. – 2004. – Vol. 179. – P. 145–157. – doi: 10.1016/S0257-8972(03)00808-9.
  2. Structural and mechanical properties of compositionally gradient CrNx coatings prepared by arc ion plating / M. Zhang, M.K. Li, K.H. Kim, F. Pan // Applied Surface Science. – 2009. – Vol. 255. – P. 9200–9205. – doi: 10.1016/J.APSUSC.2009.07.002.
  3. High-temperature oxidation resistant (Cr, Al)N films synthesized using pulsed bias arc ion plating / M. Zhang, G. Lin, G. Lu, C. Dong, K.H. Kim // Applied Surface Science. – 2008. – Vol. 254. – P. 7149–7154. – doi: 10.1016/J.APSUSC.2008.05.293.
  4. Structure and corrosion properties of PVD Cr–N coatings / C. Liu, Q. Bi, H. Ziegele, A. Leyland, A. Matthews // Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. – 2002. – Vol. 20. – P. 772–780. – doi: 10.1116/1.1468651.
  5. Adhesion improvements in silicon carbide deposited by plasma enhanced chemical vapour deposition / V.A. Mernagh, T.C. Kelly, M. Ahern, A.D. Kennedy, A.P.M. Adriaansen, P.P.J. Ramaekers, L. McDonnell, R. Koekoek // Metallurgical Coatings and Thin Films. – 1991. – Vol. P. 462–467. – doi: 10.1016/B978-0-444-89455-7.50087-3.
  6. Characterization of zirconium nitride coatings deposited by cathodic arc sputtering / K.A. Gruss, T. Zheleva, R.F. Davis, T.R. Watkins // Surface and Coatings Technology. – 1998. – Vol. 107. – P. 115–124. – doi: 10.1016/S0257-8972(98)00584-2.
  7. Chang Y.Y., Chang B.Y., Chen C.S. Effect of CrN addition on the mechanical and tribological performances of multilayered AlTiN/CrN/ZrN hard coatings // Surface and Coatings Technology. – 2022. – Vol. 433. – P. 128107. – doi: 10.1016/J.SURFCOAT.2022.128107.
  8. Nanometric CrN/CrAlN and CrN/ZrN multilayer physical vapor deposited coatings on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells / T. Rajabi, M. Atapour, H. Elmkhah, S.M. Nahvi // Thin Solid Films. – 2022. – Vol. 753. – P. 139288. – doi: 10.1016/J.TSF.2022.139288.
  9. The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings / O. Maksakova, S. Simo?s, A. Pogrebnjak, O. Bondar, Y. Kravchenko, V. Beresnev, N. Erdybaeva // Materials Characterization. – 2018. – Vol. 140. – P. 189–196. – doi: 10.1016/J.MATCHAR.2018.03.048.
  10. Enhancing mechanical and tribological performance of multilayered CrN/ZrN coatings / J.J. Zhang, M.X. Wang, J. Yang, Q.X. Liu, D.J. Li // Surface and Coatings Technology. – 2007. – Vol. 201. – P. 5186–5189. – doi: 10.1016/J.SURFCOAT.2006.07.093.
  11. Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings / S.H. Huang, S.F. Chen, Y.C. Kuo, C.J. Wang, J.W. Lee, Y.C. Chan, H.W. Chen, J.G. Duh, T.E. Hsieh // Surface and Coatings Technology. – 2011. – Vol. 206, iss. 7. – P. 1744–1752. – doi: 10.1016/j.surfcoat.2011.10.029.
  12. Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings / Z.G. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong, C. Coddet // Applied Surface Science. – 2009. – Vol. 255, iss. 7. – P. 4020–4026. – doi: 10.1016/j.apsusc.2008.10.075.
  13. Thick CrN/NbN multilayer coating deposited by cathodic arc technique / J.A. Araujo, R.M. Souza, N.B. De Lima, A.P. Tschiptschin // Materials Research. – 2017. – Vol. 20. – P. 200–209. – doi: 10.1590/1980-5373-MR-2016-0293.
  14. A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings / H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam // Surface and Coatings Technology. – 2006. – Vol. 201. – P. 2193–2201. – doi: 10.1016/J.SURFCOAT.2006.03.037.
  15. Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell / P. Yi, L. Zhu, C. Dong, K. Xiao // Surface and Coatings Technology. – 2019. – Vol. 363. – P. 198–202. – doi: 10.1016/J.SURFCOAT.2019.02.027.
  16. Исследование структурно-фазового состояния и механических свойств покрытий ZrCrN, полученных вакуумно-дуговым методом / А.В. Филиппов, Н.Н. Шамарин, Е.Н. Москвичев, О.С. Новицкая, Е.О. Княжев, Ю.А. Денисова, А.А. Леонов, В.В. Денисов // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 1. – С. 87–102. – doi: 10.17212/1994-6309-2022-24.1-87-102.
  17. Sue J.A., Perry A.J., Vetter J. Young’;s modulus and stress of CrN deposited by cathodic vacuum arc evaporation // Surface and Coatings Technology. – 1994. – Vol. 68–69. – P. 126–130. – doi: 10.1016/0257-8972(94)90149-X.
  18. Meenaatci A.T.A., Rajeswarapalanichamy R., Iyakutti K. Pressure induced phase transition of ZrN and HfN: a first principles study // Journal of Atomic and Molecular Sciences. – 2013. – Vol. 4, N 4. – P. 321–335. – doi: 10.4208/jams.121012.012013a.
  19. Chimmat M., Srinivasan D. Understanding the residual stress in DMLS CoCrMo and SS316L using X-ray diffraction // Procedia Structural Integrity. – 2019. – Vol. 14. – P. 746–757. – doi: 10.1016/J.PROSTR.2019.05.093.
  20. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. – 2-е изд., испр. и доп. – М.: Металлургия, 1970. – 366 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».