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A B S T R A C T

Introduction. During machining, the resulting temperature has a wider and more critical impact on machining 
performance. During machining, the power consumption is mainly converted into heat near the cutting edge of 
the tool. Almost all the work performed during plastic deformation turns into heat. Researchers have put a lot 
of effort into measuring the cutting temperature during machining, as it signifi cantly affects tool life and overall 
machining performance. The purpose of the work: to investigate the temperature of the chip-tool interface, taking 
into account the infl uence of cutting parameters and the type of tool coating during SS304 turning. The chip-tool 
interface temperature is measured by changing the cutting speed and feed with a constant cutting depth for uncoated 
and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools. In addition, an attempt is made to 
develop a model for predicting the temperature of the chip-tool interface using dimensional analysis and ANN 
simulating to better understand the process. The methods of investigation. Experiments are carried out with varying 
the cutting speed (140-260 m/min), feed (0.08-0.2 mm/rev) and a constant cutting depth of 1 mm. The chip-tool 
interface temperature is measured using the tool-work thermocouple principle. The Calibration Setup is designed 
to establish the relationship between the produced electromotive force (EMF) and the cutting temperature during 
machining. Statistical dimensional analysis and artifi cial neural network models have been developed to predict the 
temperature of the chip-tool interface. Tangential cutting force and chip attributes such as chip width and thickness 
are also measured depending on the cutting conditions, which is a prerequisite for dimensional analysis simulation. 
Results and Discussion. A tool made of TiAlN carbide with PVD coating had a lower temperature at the chip-tool 
interface than a tool with TiN/TiAlN coating. It has been observed that the chip-tool interface temperature increases 
prominently with the cutting speed, followed by the chip cross-sectional area and the specifi c cutting pressure. 
However, a lower cutting force was observed when using a carbide tool with a multi-layer TiN/TiAlN coating, which 
can be attributed to a lower coeffi cient of friction created by the front surface of this tool for fl owing chips. On the 
other hand, the greatest cutting force was observed in uncoated carbide tools. It was noticed that the developed 
models allow predicting the temperature of the chip-tool interface with an absolute error of 5%. However, the lowest 
average absolute error of 0.78% was observed with the ANN model and, therefore, can be reliably used to predict the 
chip-tool interface temperature during SS304 turning.

For citation: Kulkarni A.P., Chinchanikar S., Sargade V.G. Dimensional analysis and ANN simulation of chip-tool interface temperature 
during turning SS304. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, 
no. 4, pp. 47–64. DOI: 10.17212/1994-6309-2021-23.4-47-64. (In Russian).
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Introduction

Austenitic stainless steel, the most consumed nonmagnetic steel, is categorized under diffi cult-to-cut 
materials. This is due to its tendency to produce long, sticky, and stringy chips along with the formation 
of the built-up edge during machining that produces less tool life and poor surface fi nish. The selection of 
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cutting tool material, its geometry, and cutting conditions play an important role while machining these 
steels. 

The researchers observed higher chip-tool interface temperature with uncoated tools followed by TiC/
TiN and TiC/Al2O3/TiN coated carbide tools. The interface temperature was observed increasing rapidly 
with the increase in the feed and cutting speed. However, the increase in the cutting temperature accelerated 
the tool wear and signifi cantly affected the tool life [1-2]. Pal et al. [3] developed mathematical model to 
predict the chip-tool interface temperature. Their study showed that the cutting speed and cutting depth 
were more signifi cant for increasing the temperature of the interface. Abhang et al. [4] developed the 
thermoelectric relationship between the cutting tool and the work material. Their study showed that the 
cutting speed followed by feed had a prominent effect on cutting temperature during turning of EN-31 steel.  

Alvelid [5] used the tool-work thermocouple principle. The author carried out the calibration by using 
the direct heating of the calibration material with the help of an electric current through a resistance element 
or induction coil which was placed against the contact point of the two materials. His study showed that the 
thermo-electric potential was signifi cantly affected with the heating and cooling rates. Chinchanikar and 
Choudhury [6] also developed a mathematical model to predict the average chip-tool interface temperature 
based on experimental observations. Their study correlated the EMF (electromotive force) and the interface 
temperature based on the tool-work thermocouple principle. Their study showed that the cutting speed with 
subsequent feed has a signifi cant impact on the interface temperature, and the cutting depth has a negligible 
effect on the interface temperature. In another study [7], they found higher interface temperature for harder 
working material than softer working material. 

Pannee rselvam et al. [8] investigated the chip-tool interface temperature for the powder metallurgy-made 
cutting tools. Their study revealed that cutting speed has a signifi cant impact on the interface temperature. 
Bapat et al. [9] developed a numerical model to obtain temperature distribution in hard turning of AISI 
52100 steel. The temperature distribution model as a function of heat generation was developed using 
explicit ABAQUS and the approach of an Arbitrary Lagrangian-Eulerian formulation (ALE). Their study 
showed that cutting temperature increases with the increase in cutting speed. The simulated results of the 
temperature distribution showed a good agreement with the results available in the literature. 

Dhar et al. [10] reported rapid deterioration in the surface roughness due to the increase in cutting 
temperature and stress at the tool tip. The tool-work thermocouple principle was used to measure the chip-
tool interface temperature. Anagonye et al. [11] performed the calibration of the tool and work materials 
with the oxy-acetylene torch that was used as a heating source for the tool-work thermocouple technique. 
Their study showed decrease in the cutting temperature with the increase in the included angle and nose 
radius of the insert due to availability of more area for conduction of heat.

It follows from the analyzed literature that the cutting parameters, especially the cutting speed and feed, 
signifi cantly affect the temperature of the chip-tool interface. Most of the studies attempted measurement 
of cutting temperature during machining using the tool-work thermocouple method. However, there is very 
little research on the cutting temperature, considering the infl uence of cutting parameters and the type of 
tool coating when turning SS304. Moreover, very few attempts are found on modeling cutting temperature 
using dimensional analysis and artifi cial neural networks. Considering the above facts, the present work 
investigates the chip-tool interface temperature during turning SS304 with uncoated and PVD single-layer 
TiAlN and multi-layer TiN/TiAlN coated carbide tools. In addition, for a better understanding of the process, 
an attempt was made to develop a model for predicting the temperature of the chip-tool interface using size 
analysis and ANN simulation.

Experimental Details

In the present work, the chip-tool interface temperature was investigated during turning of SS304 
stainless steel workpiece having the diameter and length of 90 mm and 300 mm, respectively, using uncoated 
and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools. The ISO specifi cations of 
the uncoated insert and tool holder used in the present study are given in Table 1. The nose radius of the 
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selected cutting insert was 0.8 mm, and the edge radius of the insert was approximately 20 μm. Turning 
experiments were performed on the CNC lathe. The chip-tool interface temperature was investigated under 
dry turning at cutting speeds of 140, 200, and 240 m/min, feed of 0.08, 0.14, 0.2, and 0.26 mm/rev, and a 
constant depth of cut 1 mm. The cutting parameters were decided based on a literature review, machine 
capability, and recommendations of the cutting tool manufacturer. 

In machining, the temperature generated has a wider and critical impact on machining performance. 
During machining, the power consumption is mainly converted into heat near the cutting edge of the tool. 
Almost all the work performed during plastic deformation turns into heat. In the present study, the law of 
the thermoelectricity (Seebeck effect) principle was used to correlate the difference in temperature between 
the hot junction and the cold junction of two dissimilar materials with the generated electromotive force 
(EMF). However, the presence of third material would be undesirable as it can alter the fi nal output due to 
the formation of parasitic EMF at the second junction. As it alters the fi nal output, precautionary measures 
are required to be taken to eliminate it. Therefore, insulation of the work/tool material plays important role 
in getting accurate results from the tool-work thermocouple method.

Initially, the workpiece was clamped with the help of chuck and supported by using the tailstock center 
while machining. Therefore, care was taken to isolate the workpiece from the jaws of the chuck. The 
workpiece was insulated by using a special type of Tefl on tape and bush as shown in Fig. 1. Also, the chuck 
jaw pressure was adjusted and kept as optimum to prevent penetration of the jaws across the insulation. 
After insulating the workpiece from one end i.e., from the chuck, insulation of the workpiece from the 

T a b l e  1
The ISO specifi cations of cutting insert and tool holder

Particulars Details

ISO designation of cutting insert CNMG120408 (MG-MS)

Including angle 80°

Rake angle –6°

Clearance angle 5°

Approach angle 95°

ISO designation of tool holder PCLNL2525M12

Fig. 1. Insulation of the workpiece with the inserted plugs



OBRABOTKA METALLOV MATERIAL SCIENCE

Том 23 № 3 2021

OBRABOTKA METALLOV EQUIPMENT. INSTRUMENTS

Vol. 23 No. 4 2021

Fig. 2. Tool-work thermocouple machining setup

tailstock was necessary to completely isolate the workpiece from the machine body. In this regard, the 
revolving center was coated with epoxy gel-coating material and Tefl on insulating plugs (non-conductive 
material plugs) were used. As the tool holder is in direct contact with the turret and ultimately with the 
machine body, the different parts of the tool holder that come directly in contact with the cutting tool were 
coated. The coating material used for the coating of the tool holder (a shim, L-shape lever, packing, and 
shank body) was epoxy-polyester with a coating thickness of around 20 μm.

Tool and workpiece junction at the time of machining was considered as hot junction while the carbon 
brush touching the workpiece was cold junction as shown in Fig. 2. The connection leads from the tool 
were taken through the small opening provided on the tool holder shank. A carbon brush was used to make 
wiring connections from the rotating workpiece. A special stand and spring-loaded holder were designed 
and fabricated to maintain a uniform and fi rm contact between the carbon brush and the workpiece as 
shown in Fig. 2. 

One end of copper wire was placed between the insert and tool holder and the other end was connected 
to the voltmeter. One additional copper wire was used for completing the electric circuit. One end of the 
wire was attached to the carbon brush and the other end to the voltmeter. Copper wire of 1 mm diameter was 
used for the connection purpose and its length was maintained constant during experiments and calibration.  

Calibration Setup was developed to establish the relationship between the EMF produced and cutting 
temperature during machining. Tool-work thermocouple junction was constructed using a long continuous 
chip and tungsten carbide insert. An electric air heater was used as a heating element for the work-
tool junction. It simulated the thermal phenomena in machining. It is reported in the literature that the 
calibration temperature should be more than half the melting point of the working material (SS304 melting 
point: 1,453 °C) [1, 2]. Hence, an electric air heater made of Inconel material having a capacity of 2 KW 
was selected and it can generate 1,000 °C temperature at red-hot conditions. A standard alumel-chromel 
thermocouple wire was mounted at the junction of the workpiece and insert.

For calibration of the chip-tool interface temperature, initially, the workpiece and tool materials to be 
calibrated were clamped to ensure the proper contact between it. Then, one end of the copper wire was 
connected to the tool and workpiece and another end was connected to the voltmeter terminals. The electric 
air heater was then brought into contact with the junction point to heat the junction point. A standard K-type 
(chromel-alumel) thermocouple was held at the work-tool junction and connected to the temperature 
indicator. The whole assembly was kept in a container that was insulated with glass wool to reduce heat 
losses. The electric heater was turned on and the junction point was heated gradually up to 1,000 oC, 
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and corresponding EMF was recorded. The calibration graph for the combination of uncoated and PVD 
single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools for SS304 work material is shown 
in Fig. 3. 

Results and Discussion

Signifi cant research around the world is aimed at improving the workability of SS304. Table 2 shows 
the experimental results of cutting temperatures measured during dry turning of SS304 steel with uncoated 
and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools at different cutting conditions. 
Fig. 4 illustrates the infl uence of the cutting speed and feed on the cutting temperature when using uncoated 
and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools.

In recent years, researchers have been paying considerable attention to the development of predictive 
models to measure performance during machining. In the present work, statistical-based, dimensional 
analysis, and artifi cial neural network models are developed to predict the chip-tool interface temperature. 

Fig. 3. Calibration curves for uncoated and PVD 
single-layer TiAlN and multi-layer TiN/TiAlN coated 

carbide tools

T a b l e  2
Cutting temperature for different tools varying with cutting conditions

Expt. no. Cutting speed 
(m/min) Feed (mm/rev)

Chip-tool interface temperature

Uncoated TiAlN coated TiN/TiAlN coated

1 140 0.08 825 930 996

2 140 0.14 900 1,039 1,047

3 140 0.2 939 1,041 1,081

4 200 0.08 933 1,109 1,104

5 200 0.14 1,029 1,169 1,161

6 200 0.2 1,039 1,200 1,199

7 260 0.08 1,078 1,186 1,191

8 260 0.14 1,120 1,204 1,252

9 260 0.2 1,175 1,257 1,293
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T a b l e  3

Statistical-based models to predict cutting temperature

Type of tool Statistical-based models R-squared Eq. no. 

Uncoated carbide T =169.0517V0.3814f 0.01144 0.98 (1)

PVD-coated TiAlN carbide tool T =265.5113V0.3074f 0.0874 0.93 (2)

PVD-coated TiN/TiAlN carbide tool T =299.4988V0.2889f 0.0897 0.99 (3)

Fig. 4. Cutting temperature for (a) Uncoated, (b) TiAlN coated, (c) TiN/TiAlN coated tool

                                    a                                                                                                               b

c

The surface plots are drawn for a better understanding of the effect of process parameters on the cutting 
temperature. The values of the coeffi cients involved in the statistical-based models for different tools were 
calculated by regression method using the Data-fi t software. The R-squared values for all the developed 
statistical-based models above 0.9 (Table 3) shows that developed models could be reliably used to predict 
the chip-tool interface temperature during the turning of SS304 for the given combination of tool and 
workpiece pair.

In order to have a clear idea of the effect of the input parameters on the cutting temperature, three-
dimensional (3-D) surface plots are constructed by changing the process parameters for uncoated and 
PVD-coated tools. The plots are constructed using developed empirical equations. Fig. 4 depicts the 
3-D surface plots of cutting temperature during turning of SS304 for different tools plotted using Eqs. (1) to (3).

It can be seen from Fig. 4, a–c that the cutting temperature increases with increasing cutting speed and 
feed. An increase in the cutting temperature can be seen as more prominent with the cutting speed followed 
by the feed. However, this effect can be seen as more signifi cant with the uncoated carbide tool followed 
by TiAlN coated carbide tool. This can be also confi rmed from the higher positive exponent value for the 
cutting speed followed by a feed from Eqs. (1) to (3). 
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The lowest cutting temperature observed for the uncoated carbide tool shows that the maximum heat 
was penetrated in the cutting tool from the rake surface. However, the higher interface temperature observed 
with coated tools shows that the coatings contributed to less heat penetration into the base of the tool. On 
the other hand, amongst the coated tools, the lowest chip-tool interface temperature was observed with 
the PVD-coated TiAlN carbide tool than the TiN/TiAlN coated tool. This can be also confi rmed from the 
higher thermal conductivity value for the uncoated carbide tool followed by the TiAlN coating and TiN/
TiAlN coating. Thermal conductivity of uncoated tool, PVD-coated TiAlN and TiN/TiAlN coated tools are 
80 W/m-K, 6.7 W/m-K, and 5.1 W/m-K, respectively [12–14]. The thermal conductivity of the uncoated 
carbide tool is more compared to the TiAlN and TiN/TiAlN coated tools. Despite the fact that the thermal 
conductivity increases with temperature, at high temperatures the thermal conductivity of the coated tool 
remains lower than that of the uncoated tool [12]. Therefore, the heat conducted in the tool during machining 
with the uncoated carbide tool is more compared to that of the TiAlN and TiN/TiAlN coated tools. Hence, 
the temperature for the uncoated carbide tool is less than that of the coated tools. These results are matching 
well with those reported by Grzesik [4, 13, 15].

The increase in cutting temperature prominently with the cutting speed could be attributed to an increase 
in the specifi c cutting energy. The specifi c cutting energy can be partitioned into two main components 
shear energy and frictional energy. Shear energy and frictional energy are directly proportional to the shear 
velocity and chip velocity respectively [16]. Therefore, an increase in the cutting speed refl ects directly 
into the increase in the energy and hence the cutting temperature. In addition, it has been observed that the 
coating structure greatly affects the cutting temperature. Moreover, it has been noted that uncoated tools 
wear out quickly compared to coated tools, which increase the chip contact area with the tool, which leads 
to greater heat conduction to the tool area. While in the case of coated tools, the higher wear resistance of 
the coatings limits the wear and, consequently, the chip contact area with the tool and allows more heat 
to be removed with the current chips. The higher thermal conductivity of uncoated tools decreases its hot 
hardness, which results in earlier failure of the tools [17]. 

The problems of temperature measurement have led to the research interest in the development of 
mathematical models for predicting temperature during machining. Suffi cient studies attempted to predict 
the cutting temperature using statistical-based models. The mathematical models developed by Boothroyd, 
Shaw, and Rapier have been also extensively used by researchers to predict the cutting temperature. In this 
section, simulation using dimensional analysis and artifi cial neural network to predict a chip-tool interface 
temperature with uncoated and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools are 
discussed.

Dimensional analysis of cutting temperature
In dimensional analysis, all independent variables of the problem are written down in the form of 

its dimensionless combinations. These independent dimensionless variables can be determined based on 
prior knowledge, reasoning, or experiments. The values of constants are obtained from experimental data 
[18-19]. In the present work, dimensional analysis is done to develop a mathematical model for obtaining 
the cutting temperature during the turning of SS304 steel using uncoated and TiAlN coated tools. These 
relations are developed based on the experimental data. The physical quantities selected for the dimensional 
analysis are given in Table 4. 

Physical quantities are expressed in such fundamental units as Mass (M), Length (L), Time (T), and 
Celsius temperature (D). This is the important step in which the most infl uencing variables that affect the 
cutting temperature should be selected. It was assumed that about 80…85 % of the heat is dissipated to-
gether with the chips, and, therefore, the thermal conductivity of the tool is not included in present analysis. 
The variables selected for the analysis are given below in Table 4. The number of fundamental quantities 
is four and the number of physical quantities selected in the present study is six. According to Buckingham 
Pi Theorem, the number of dimensionless groups required to correlate all these quantities would be equal 
to the difference between the number of physical quantities and the fundamental quantities which is two in 
the present study. 
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T a b l e  4

Physical quantities along with dimensional formula

Physical quantity Symbol Dimensional formula

Temperature (degree Celsius) Θ D

Cutting speed (m/min) Vc LT–1

Chip cross-sectional area (m2) A0 L2

Specifi c cutting pressure (N/m2) Sp ML–1T–2

Thermal conductivity of work material (W/m-K) k MLT3D–1

Volumetric specifi c heat of work material (a product of density () 
and specifi c heat of work material (C)) ([kg/m3][J/kg-K]) C ML–1T–2D–1

Then four basic variables out of six physical quantities are selected in such a way that it does not make 
any dimensionless group in themselves. Those variables are Vc, Sp, k, and C. One non-basic quantity is 
grouped with all the four basic variables to give one dimensionless number. Let Q1 and Q2 are the two di-
mensionless groups, which are expressed as follows:

 ( )1 ( )( ,)) (a b c d
c pQ V S k C =   (4)

 ( )2 0( ) ) .) (( e f g h
c pQ V S k C A=   (5)

We write these Eqs. (4) and (5) in terms of fundamental measurements as,

 2 3 2
1 ( )( )( )( ) ,a a b b b c c c c d d d dQ L T M L T M L T D M L T D D- - - - - - -=   (6)

 2 3 2 2
2 ( ) ( ) .( )( )e e f f f g g g g h d h h hQ L T M L T M L T D M L T D L- - - - - - - -=  (7)

After the rearranging and since Q1 and Q2 are dimensionless quantities, the index for each term should 
be zero. Therefore, equating index for each term to zero and solving equations simultaneously, we get, 
a = 0, b = –1, c = 0, d = 1, e = 2, f = 0, g = –2, and h = 2. Substituting these values of constant in Eqs. (6) 
and (7), we get, 

 1 / ,( )pQ C S =   (8)

 ( )2 2 2
2 ( ) ./c oQ V C A k=   (9)

Let expressing chip-tool interface temperature as a function of the two dimensionless groups Q1 and Q2 
that includes dependent variable ‘θ’. Cutting temperature equation using dimensional analysis (Eq. (8) and 
(9)) can be expressed as shown in Eq. (10). 

 ( )( )2 2 2
0 0/( ) /( ) ,

n
m

p cC S C V C A k  =   (10)

where C0, m, and n are constants, and its values are determined based on the experimental results. Eq. (10) 
can be used for determining the cutting temperature during the turning of SS304 steel using uncoated and 
coated inserts. The values of the constants in Eq. (10) are obtained using experimental results of cutting 
temperature (Table 2) and by knowing the cutting force, chip thickness, and chip width for the given cutting 
conditions (Table 5). 
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The volumetric specifi c heat of work material (c) and the thermal conductivity (k) of work material 
(at 500 oC) are referred to from the literature and considered as 502 J/kg-K and 21.5 W/m-K. A0 is the cross-
sectional area of the chip and is obtained by taking the product of the chip thickness (ac) and the chip width 
(aw) for the given cutting conditions. The specifi c cutting pressure (Sp) is obtained by dividing the cutting 
force (Fc) with the product of a feed and depth of cut. The tangential cutting force (Fc) was measured by a 
Kister-9257B type cutting force dynamometer and average chip width and chip thickness were measured 
using a digital micrometer. The values for the constants obtained are C0 = 1.24, m = 0.154, and n = 0.226 
for uncoated carbide tool and C0 = 1.97 and 6.63, m = 0.083 and 0.0432, n = 0.169 and 0.1605 for TiAlN 
and TiN/TiAlN coated carbide tools, respectively. Substituting these values in Eq. (10), the fi nal equations 
to predict cutting tem perature with uncoated, TiAlN coated and TiN/TiAlN coated carbide tools are given as 
Eqs. (11), (12), and (13), respectively. 

For uncoated carbide tool,

 0,154 0,452 0,226
028, 5636 ;pS V A =   (11)

For TiAlN coated carbide tool,

 0,083 0,338 0,169
0416, 5 ;528 pS V A -=   (12)

For TiN/TiAlN coated carbide tool,

 0,0432 0,321 0,1605
0 .167, 9887 pS V A =   (13)

From the indicators Sp, V and of developed Eqs. (11)–(13) it can be seen that the chip-tool interface 
temperature depends more on the cutting speed, followed by the chip cross-sectional area and the specifi c 
cutting pressure. However, these parameters can be seen as more prominently affecting the cutting tempera-
ture for uncoated carbide tool followed by single-layer TiAlN coated carbide tool and multi-layer TiN/TiAlN 
coated carbide tool. The chip-tool interface temperature for uncoated carbide, single-layer TiAlN coated and 
multi-layer TiN/TiAlN coated carbide tools at different cutting conditions is calculated using Eqs. (11)–(13), 
respectively, and is shown in Table 6.

T a b l e  5

The cutting force, chip thickness, and chip width at cutting conditions stated in Table 2 

Expt. no.
Uncoated tool TiAlN coated tool TiN/TiAlN coated tool

Fc (N) ac (mm) aw (mm) Fc (N) ac (mm) aw (mm) Fc (N) ac (mm) aw (mm)

1 410 0.287 1.64 354 0.3 1.5 329 0.24 1.47

2 630 0.370 1.86 536 0.32 1.8 460 0.3 1.73

3 702 0.480 1.9 610 0.35 1.83 570 0.37 1.77

4 387 0.260 1.72 318 0.28 1.663 321 0.22 1.59

5 554 0.360 1.87 498 0.3 1.76 448 0.28 1.72

6 636 0.473 1.92 582 0.33 1.83 555 0.35 1.78

7 365 0.200 1.87 366 0.27 1.646 315 0.19 1.66

8 501 0.330 1.86 512 0.29 1.733 440 0.26 1.7

9 630 0.467 1.92 556 0.315 1.84 545 0.34 1.78
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Artifi cial neural network 
Artifi cial neural network (ANN) is a computational technique that can model relationships between 

input and output parameters. There are different types of ANN, however, the most used is the multilayer 
perceptron (MLP). A typical MLP architecture is shown in Fig. 5. MLP is characterized by three different 

layers, namely the input layer, the hidden layer, and 
the output layer, which consist of an interconnected 
group of artifi cial neurons. Each neuron in a layer is 
connected to all the neurons in adjacent layers. The 
number of neurons present in the input layer and 
output layer is equal to the number of input variables 
and corresponding output values. The number of 
hidden layers and the neurons in those layers is user-
defi ned.

To predict output with higher accuracy, training 
or learning of the developed network is essential. 
The procedure used to perform the learning process 
is called a learning algorithm, the function of which 
is to modify the synaptic weights of the network in 
an orderly fashion to attain the desired output. There 

are various algorithms to train a neural network. One of the most preferred training algorithms is the er-
ror backpropagation algorithm. For a typical ANN algorithm, let x1, x2,… x3 be an input data, y1, y2,… yn 
be the desired output, and o1, o2… ok be the output obtained from the output layer of the network when x1, 
x2,… x3 is presented at the input layer. At the fi rst step, the weights and thresholds are initialized. Then, the 
output of each neuron f (wi) is calculated from the input data and initialized weights which lead to the fi nal 
output prediction of the network. Then, the error at ith output node (oi–yi) is calculated. Further, the weights 
between the hidden layer and output layer are modifi ed based on an error at each output node. And weights 
in the previous layers are modifi ed by back-propagating errors calculated at output layer nodes [20]. This 
process is repeated for a set of input and output of training data. The training stops when the output of the 
neural network is suffi ciently close to the desired output for each set.

ANN model is developed to predict the chip-tool interface temperature considering the input parameters 
as the tool type, cutting speed, and feed using MATLAB Toolbox. The ANN architecture has three layers 

Fig. 5. Typical ANN architecture

T a b l e  6

The chip-tool interface temperature with different models and tools

Expt. no. Uncoated tool TiAlN coated tool TiN/TiAlN coated tool

SM DA ANN SM DA ANN SM DA ANN 

1 834 838 837 973 963 941 996 996 987

2 889 895 936 1,021 1,017 1,027 1,047 1,049 1,045

3 926 918 942 1,054 1,055 1,041 1,081 1,082 1,049

4 955 965 939 1,085 1,103 1,099 1,104 1,114 1,098

5 1,019 1,026 1,037 1,140 1,137 1,169 1,161 1,161 1,172

6 1,061 1,061 1,038 1,176 1,183 1,217 1,199 1,203 1,195

7 1,056 1,034 1,078 1,176 1,182 1,188 1,191 1,191 1,195

8 1,126 1,114 1,119 1,235 1,229 1,210 1,252 1,245 1,254

9 1,173 1,189 1,178 1,275 1,288 1,261 1,293 1,301 1,275
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namely input, output, and hidden layers as shown in Fig. 6. The input layer has 3 neurons, the output layer 
has 1 neuron, and the hidden layer has 8 neurons. A feed-forward neural network displays a data set of 
numeric inputs with a set of numeric targets. The Neural Fitting app of MATLAB Toolbox will help in the 
selection of data and for the creation and training a network and evaluate its performance using mean square 
error and regression analysis. A two-layer feed-forward network with sigmoid hidden neurons and linear 
output neurons is selected in the present study that fi t multi-dimensional problems arbitrarily well, given 
consistent data and enough neurons in its hidden layer. The network has been trained with the Levenberg-
Marquardt backpropagation algorithm. 

Fig. 6. ANN architecture to predict chip-tool interface temperature

In a neural network, three kinds of samples are used for the training and validation of test data. In the 
present work, around 70 % of the data (experimental results of cutting tool temperature) is used for training 
the neural network. The network is adjusted according to its error. Around 15 % of the data is used for 
validation of the results predicted by the trained neural network. These validation data sets are used to 
measure network generalization, and to halt training when generalization stops improving. And around 
15 % of data is used for testing the results predicted by the neural network. These data sets do not infl uence 
on training and so provide an independent measure of network performance during and after training. 

The next important step is to determine network architecture, i.e., to set the number of neurons in the 
fi tting network hidden layer. The neurons in the hidden layer are selected by checking the accuracy of the 
network. The number of neurons on the hidden layer can be changed if the network does not perform well 
after training. In the present study, the neural network is modeled considering a different number of hidden 
neurons to obtain better accuracy of the predicted results. In the present study, a better-predicted accuracy of 
0.995 has been observed with 8 neurons at the hidden layer. Further, the network is to be trained using either 
the Levenberg-Marquardt algorithm or Bayesian Regularization, or Scaled Conjugate Gradient algorithm. 
The Bayesian Regularization algorithm is preferred for small and noisy data sets. This algorithm results in 
good generalization but requires more time. Scaled Conjugate Gradient algorithm requires less memory and 
stops automatically when generalization stops improving. However, the researchers have mostly used the 
Levenberg-Marquardt algorithm for training the neural network. This algorithm is comparatively faster than 
other algorithms. However, this algorithm requires more memory and training automatically stops when 
generalization stops improving, as indicated by an increase in the mean square error of the validation samples.

Neural network training performance is measured in terms of mean squared error which is the average 
squared difference between outputs and targets. Lower values are more preferable and in the present work, 
the best validation performance of 417.9654 was observed at epoch 7. Regression (R) values measure the 
correlation between outputs (predicted values) and targets (inputs). Neural network regression graphs with 
regression coeffi cients obtained while training the model, during validation, testing, and for the entire data 
set are shown in Fig. 7, a–d respectively. 

 The values of regression coeffi cients close to 1 for training, validation, testing, and for the entire data 
set shows that the developed neural network model could be reliably used for predicting chip-tool interface 
temperature during turning of SS304 for the given tool-workpiece pair. The results predicted by the neural 
network are shown in Table 6.
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Fig. 7. Neural network:
a – Training; b – Validation; c – Test; d – All data set

                             a                                                                      b

                             c                                                                      d

A comparative evaluation 
A comparative evaluation of the accuracy of the predicted results of chip-tool interface temperature with 

the statistical-based model (SM), dimensional analysis approach (DA), and artifi cial neural network (ANN) 
is presented in this section. The accuracy of the different models is assessed by obtaining % error between 
the predicted and experimental values of chip-tool interface temperature at different cutting conditions. 
Table 6 depicts the results predicted by the developed chip-tool interface temperature models for different 
tools. Predicted results can be seen in good agreement with the experimental results (Table 2) with an 
absolute error of less than 5%. However, the results predicted by the ANN model are shown with a better 
agreement with the experimental results as compared to statistical-based and dimensional analysis models. 

It has been observed that the chip-tool interface temperature gets more affected with the cutting speed 
followed by the chip cross-sectional area and the specifi c cutting pressure. With the increase in the cutting 
speed, the requirement of the cutting energy increases resulting in high cutting temperature. The thermal 
conductivity of the cutting tool also has a major infl uence on the chip-tool interface temperature. Uncoated 
tool exhibited the lowest cutting temperature. This could be attributed to its higher thermal conductivity 
and large wear-out area of the tool during machining resulting in rapid dissipation of the interface heat into 
the tool. 

A lower cutting temperature observed for single-layer TiAlN coated tool than multi-layer TiN/TiAlN 
coated tool, could be attributed to its higher thermal conductivity than the equivalent thermal conductivity of 
TiN/TiAlN coated tool. The lower thermal conductivity of the TiN/TiAlN coated tool resists heat conduction 
resulting in more temperature on the rake face. This coated tool also exhibited higher cutting temperature 
than AlTiCrN and AlTiN coated inserts [21]. However, a higher cutting temperature with a multi-layer 
tool helps to make the material being machined relatively soft and therefore, can help in improving the 
machining performance. However, the lower cutting force was observed with the multi-layer TiN/TiAlN 



OBRABOTKA METALLOV

Vol. 23 No. 3 2021

MATERIAL SCIENCE OBRABOTKA METALLOVEQUIPMENT. INSTRUMENTS

Vol. 23 No. 4 2021

coated carbide tool. This could be attributed to the lower coeffi cient of friction offered by the multi-layer 
tool rake surface to fl owing chips as confi rmed from the back surface of the chips. On the other hand, 
the highest cutting force was observed with uncoated carbide tools. The present study concludes that a 
comparative evaluation of the machining performance in terms of tool life, tool wear mechanisms, surface 
roughness, etc. is required while turning SS304 using PVD-coated single later TiAlN and multi-layer TiN/
TiAlN coated carbide tools.

Conclusions

Turning experiments on SS304 austenitic stainless steel were performed with uncoated and PVD single-
layer TiAlN and multi-layer TiN/TiAlN coated carbide tools. The classical tool-work thermocouple principle 
was used to measure the cutting temperature. The chip-tool interface temperature was investigated with 
statistical-based, dimensional analysis, and artifi cial neural network models. The following conclusions 
could be drawn.

It was noticed that the chip-tool interface temperature depends more on the cutting speed followed by 
the chip cross-sectional area and the specifi c cutting pressure. Uncoated tool exhibited the lowest cutting 
temperature due to its higher thermal conductivity and large wear-out area of the tool during machining 
resulting in rapid dissipation of the interface heat into the tool. 

A lower cutting temperature was observed for the single-layer TiAlN coated tool than the multi-layer 
TiN/TiAlN coated tool. This could be attributed to its higher thermal conductivity than the equivalent thermal 
conductivity of the TiN/TiAlN coated tool.  However, the lower cutting force was observed with the multi-
layer TiN/TiAlN coated carbide tool that could be attributed to the lower coeffi cient of friction offered by 
the rake surface of this tool to fl owing chips.  On the other hand, the highest cutting force was observed with 
uncoated carbide tools.

The results predicted by all the developed models for the temperature of the chip-tool interface for 
different tools are in good agreement with the experimental results with an absolute error of less than 5%. 
However, the results predicted by the ANN model showed better agreement with the experimental results 
than statistical-based and dimensional analysis models, and therefore, the developed ANN model can be 
reliably used for predicting chip-tool interface temperature during SS304 turning. 
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