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A B S T R A C T

Introduction. In numerous experimental studies of metal cutting processes on metal-cutting equipment, the 
existence of some optimal processing mode is noted, which was most vividly formulated by A.D. Makarov in his 
point on the existence of an optimal cutting temperature (processing speed). Here, by the authors from Russia, 
the emphasis is on the description of the optimality of cutting processes related to the properties of the processed 
material and the properties of the tool used in this process. However, there is another opinion in the Western 
scientifi c literature, which is generally based on the regenerative nature of vibrations in cutting dynamics. Vibration 
regeneration is associated with the dynamics of the cutting process, which is signifi cantly affected by a lagging 
argument refl ecting the variability of the cut layer. The connection of these two approaches is seen through the 
analysis of the stability domain of the dynamic cutting system in the parameter space: cutting speeds and tool wear 
values. Subject. Based on this, the paper considers the question of the relationship between the optimal according 
to A.D. Makarov the processing mode and the dynamics of the cutting process, including the regeneration of tool 
vibrations during metal turning. To do this, two research hypotheses are formulated and numerical modeling is 
performed in order to determine its reliability. Purpose of the work: to consider the position of A.D. Makarov on the 
existence of an optimal cutting mode, from the point of view of the stability of the dynamics of metal turning. For this 
purpose, two hypotheses are put forward in the work to be analyzed. The paper investigates: a mathematical model 
describing the dynamics of vibration oscillations of the cutting wedge tip, taking into account the dynamics of the 
temperature formed in the contact zone and its infl uence on the forces that prevent the forming motions of the tool. 
Research methods: a series of fi eld experiments was carried out on a metalworking equipment using the capabilities 
of the measuring stand STD.201-1, the purpose of which was to determine the effect of the thermal expansion 
of metals on the value of the buoyant force. Based on numerical simulation of the initial nonlinear mathematical 
models, as well as simulation of models linearized in the vicinity of the equilibrium point, an analysis of the stability 
of the cutting system with variations in the cutting speed and the amount of tool wear along the fl ank is conducted. 
The results of the work. The results of fi eld experiments are presented, which showed a signifi cant linear increase 
in the force pushing out the tool with an increase in temperature in the contact zone of the tool and the workpiece. 
The results of simulation of the state and the corresponding phase trajectories when the cutting wedge is embedded 
in the workpiece, as well as the forces decomposed along the axis of deformation of the tool, are presented. The 
results of modeling the Mikhailov vector hodograph for a linearized model of the dynamics of the cutting process are 
presented. Conclusions: The research results have shown that only the second hypothesis put forward by the authors 
makes it possible to adequately interpret the point put forward by A.D. Makarov. The main addition to the description 
of the point of A.D. Makarov, the authors consider it necessary to take into account changes in the pushing force with 
an increase in the temperature of the contact zone of the tool and the workpiece.

For citation: Lapshin V.P., Moiseev D.V. Determination of the optimal metal processing mode when analyzing the dynamics of cutting 
control systems. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 1, 
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Introduction

The quality of machining, as well as the cutter power, is associated with the stability of the vibration 
dynamics of the cutting process. Vibrations of the tool tip during cutting depend on two groups of factors, 
the first group is vibration activity unrelated to processes occurring in the cutting zone, and the second 
group is vibration activity caused by processes occurring in the cutting zone. In this regard, the development 
of technologies and methods for minimizing vibration activity, the nature of which is determined by the 
cutting process, is of great importance.

The vibrations of the tool accompanying the cutting process are largely determined by the regeneration 
of vibrations when cutting along the “trace”, which is called the regenerative effect [1–4]. In these 
papers, it is noted that the main factor influencing the regenerative effect is the so-called “time delay” 
[5–7], it determines the stability of the process dynamics. In addition to the regenerative nature of the 
self-excitation vibration dynamics of the cutting system, the stability of the cutting tool vibrations is 
affected by: the temperature in the contact zone of the tool and the workpiece [8]; changes in the force 
response from the cutting process to the forming motions of the tool [9]; the value characterizing the 
degree of the cutting wedge wear, etc. [10]. However, the developing synergetic concept describing the 
processes occurring in machines [11–12] allows us to speak not about every individual factor, but about 
a certain set of interrelated and interacting factors that determine the mechanism of self-excitation of the 
cutting control system [13–14].

The most important factor in the complexity of the mathematical description of cutting processes 
dynamics is, already mentioned earlier, the “time delay”, which determines the regenerative nature of the 
self-excitation of the cutting system. It should be noted that in the process of linearization of a system of 
integro-differential equations describing the complex, nonlinear, delayed dynamics of the cutting process, 
one will have to deal with an element containing a lagging argument. Such an element will not allow an 
analysis of cutting control system differential equations using a linearized model in the vicinity of the 
equilibrium point based on algebraic criteria, such as Hurwitz criterion [15], or Raus criterion [16]. The 
solution to this problem is the use of frequency stability criteria, such as the Nyquist criterion [17-18], or 
its Soviet counterpart, the Mikhailov criterion [19-21]. The Nyquist criterion itself, applied to mathematical 
models of metal cutting control systems, is well considered in research papers of V.L. Zakorotny [11, 12], 
but Mikhailov’s criterion, well-known and long-known in the American engineering school [21], is not 
widely used yet.

The purpose of such modeling is to determine some best cutting mode; such a mode, in which self-
excitation factor of the cutting control system will be minimized. It has already been experimentally proved 
that such a mode exists, and it is related to the cutting speed [22, 23]. In these research papers, the best mode 
is understood as the mode that provides the minimum roughness of the processed surface and the maximum 
dimensional stability of the cutting tool. For example, A.D. Makarov, in his monograph [22], formulates the 
following statement: “the most important factor determining the characteristics of the cutting process is the 
average contact temperature determined by the cutting mode (cutting speed).” In this and other papers, the 
tool contact temperature is determined by the current power released during cutting and converted into heat, 
which linearly depends on the cutting speed. However, in the paper [8] it was shown that when the wear of 
the cutting wedge along the flank is formed, an additional thermodynamic feedback is formed, which pre-
warms the cutting zone for the period up to the current moment of cutting. In the future, this will lead to a 
thermal expansion of the workpiece material, which will increase the value of the force pushing the tool. It 
should be noted that this factor, the restructuring of the force reaction, which is confirmed by experimental 
studies [9], was not previously taken into account when forming mathematical models of cutting systems.

A.D. Makarov himself, in his reasoning, relied on the following well-known factors:
1) the falling nature of the cutting force (temperature-speed factor of processing), identified and 

presented as a graphical characteristic in the works of N.N. Zorev [24];
2) the existence of “favorable conditions” in the cutting zone, interpreted by the transition from the 

adhesive nature to the diffusion nature of friction [22].
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In addition to these processing factors, one more important temperature factor can be taken into  
account – this is the linear expansion of metal with the increase in the contact temperature. It should be 
noted that along with the thermal expansion of metal, there is the increase in the pushing force, which 
will lead to restructuring of the entire cutting system, and to a possible loss of stability [9]. With regard to 
simulation the dynamics of the cutting process, the maximum resistance of the cutting wedge coincides 
with the maximum stability margin of the dynamic cutting system. To paraphrase the statement of  
A.D. Makarov, it can be said that in a dynamic cutting system there is some optimal, by the margin of this 
system stability, cutting mode, directly related to the speed (temperature) of cutting and the amount of the 
cutting wedge wear.

In connection with all mentioned above, the purpose of the paper is to consider the statement of  
A.D. Makarov about the existence of an optimal cutting mode, from the point of view of dynamics stability 
of metal turning. The above given reasoning allows formulating two hypotheses; the verification of 
compliance with the position of A.D. Makarov will be the objectives of the study: 

The first hypothesis: the optimal value of the cutting speed (cutting temperature), when simulating 
the dynamics of the cutting process, is determined by a combination of the following factors: the incident 
characteristic of the cutting force (according to N.N. Zorev) and the minimum coefficient of friction 
associated with the transition of friction from adhesive to diffusion nature.

The second hypothesis: the optimal value of the cutting speed (cutting temperature), when simulating 
the dynamics of the cutting process, is determined by a combination of the following factors: the incident 
characteristic of the cutting force (according to N.N. Zorev), the minimum coefficient of friction due to the 
transition of friction from adhesive to diffusion nature and the dependence of the force pushing the tool on 
the preheating of the processing zone.

Testing the first hypothesis

Formulation of a mathematical model of the cutting control system

When formulating a mathematical model, the cumulative force reaction of the cutting process to the 
forming motions of the tool, relying on the synergetic concept and the mechanical-thermodynamic approach 
is considered. The implementation of the synergetic concept in the synthesis of a mathematical model 
consists in the fact that the forces are described in the coordinates of the process state, and the mechanical-
thermodynamic approach consists in the fact that in addition to the coordinates of the cutting system state, 
the force response includes the dynamics of production and temperature dispersion during processing.

For the convenience of formulating a mathematical model, let’s consider the main axes of the deformation 
coordinates, along which the equations of motion will be written (see Figure 1).

Fig. 1. Diagram of the coordinates and forces of the model
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In the diagram shown in Figure 1, deformations are decomposed into three main axes:  x-axis is the 
axial direction of deformations (mm), y-axis is the radial direction of deformations (mm) and z-axis is the 
tangential direction of deformations (mm). Along the same axes, the force response decomposes from the 
cutting process into the forming motions of the tool (Ff , Fp, Fc (N)), Vf and Vc (mm/s) feed and cutting 
speeds, respectively, ω is the angular velocity of the spindle (rev/s).

The description of the cutting force is generalized, based on the point of proportionality of its area of 
the cut layer, in the form:

 i p iF a S= ρ χ , (1)

where iχ  – a certain expansion coefficient of the general vector of response forces on the i-axis of the tool 
deformation; it should be noted that this approach is widely used within the scientific school of  
V.L. Zakorotny [12], the depth of processing also depends on the deformations of the tool and the workpiece 

0p pa a y= − ,  where 0pt  technologically specified processing depth without taking into account 

deformations of the tool and the workpiece, the amount of feed per revolution – S. 
The feed value can be represented as the following integral:

 
V

t

f
t T

dx
S V dt

dt−

 = − 
 ∫ , (2)

where TV – revolution period of the workpiece. 
The most important component of the cutting force is the force component, which is formed not in the 

zone of primary deformation and friction of the cuttings on the tool face, but on the tool flank, where the 
pushing force and friction force are formed in the direction of the primary motion. This component of the 
force depends on the wear of the tool along the flank, therefore, based on the approach proposed in the work 
of V.L. Zakorotny [22], we describe the force formed here as:

 hK x
h hF S e−= σ , (3)

where σ  – compressive strength of the processed metal in (kg/mm2); hK  – the coefficient of the increase 
steepness in force, hS  – the contact area of the tool and the workpiece along the flank of the cutting wedge, 
which is defined as: 3h pS h t= , hK  – the coefficient determining the steepness of the nonlinear increase in 

the contact area of the tool and the workpiece when the tool and the workpiece approach.
Through the side cutting edge angle – φ, we decompose the force reaction on the x and y axes of the 

formation, as follows:

 
( )

( )
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x
h h
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h h

F F

F F

 = ϕ
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= ϕ
. (4)

The force response in the direction of z coordinate is, in essence, nothing more than the friction force, 
which can be represented as:

 ( )z
h t hF k F= , (5)

where tk  – coefficient of friction. 

Using the approach proposed by A.D. Makarov [22], we identify the characteristic of friction coefficient 
by the following expression: 

 
1 2

0 / 2f fK Q K Q
t t tk k k e e

− = + ∆ +  , (6)
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where 0tk  – some constant minimum value of the friction coefficient, tk∆  – the value of the increment of 
the friction coefficient when the temperature changes in the contact zone, 1fK  and 2fK  – coefficients 

determining the steepness of the fall and growth characteristics of the friction coefficient.
Thus, generalizing the description of the force response from the cutting process to the forming motions 

of the tool, we obtain the following equations describing the force response:

 

( )
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3
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x
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c h
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
 = χ +

 = χ +

 (7)

In addition to the power and thermodynamic subsystems of the cutting system, in the general structure 
of the control system (see Figure 1), there is a subsystem of deformation motions of the tool tip, which was 
indirectly included in our reasoning, but is not directly represented by the model. Taking into account the 
dependencies of response forces proposed by Equation 6, as well as relying on the approach to modeling 
the dynamics of the deformation motion of the tool used in the scientific school of V.L. Zakorotny [12], we 
assume that the model of a tool tip deformations will take the following form:
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 (8)

where [ 2s /kg mm⋅ ]; h [ s/kg mm⋅ ]; ñ [ /kg mm ] – matrices of inertia coefficients, dissipation coeffi-
cients and stiffness coefficients, respectively.

As a result of the cutting wedge evolution, a contact area is formed along the flank, the length of 
which determines the interaction time, as well as the interaction time is determined by the cutting speed. 
The conversion of cutting power to temperature requires a preliminary formalized description of the most 
instantaneous cutting power, which is conveniently represented by the following expression:

 ( )( )
3

z
ñ ñ ñh

dz dz
N F V F F V

dt dt
   = − = χ + −   
   

. (9)

Using the approach proposed in [8], let’s synthesize a differential equation describing the thermodynamic 
component of the system as:
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 – transmission ratio, α1, α2 – dimensionless scaling param-

eters, λ  – the coefficient of thermal conductivity, Qk  – the coefficient characterizing the conversion of ir-

reversible transformations power released in the tool/workpiece contact zone into temperature. 
Thus, the system of equations (8)–(10) will be the mathematical model of the cutting system.

Mikhailov criterion and linearization of the system of equations

To assess the stability of the control system based on the Mikhailov criterion, the characteristic polynomial 
of the transfer function of the control system is used:
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 D (p) = a0p
n + a1p

n–1 + …+ an-1p + an (11)

where n – the degree of polynomial and it is also the order of the differential equation, for the case represented 
by the expression (8), (10), n = 8 .

Assuming p = jω , we transform the characteristic polynomial into a complex frequency polynomial:

D (jω) = a0(jω)n + a1(jω)n-1 +…+ an-1(jω) + an .

In case of stable systems, the hodograph of the Mikhailov vector has the property of starting from the 
point U(0) = an, V(0) = 0. As ω increases from zero to infinity, the point M(U,V) moves to the left so that 
the curve tends to cover the origin, while moving away from it. If we draw the radius vector from the origin 
to the point M(U,V), it turns out that the radius vector rotates counterclockwise, continuously increasing.

The Mikhailov criterion itself is formulated as follows: when the frequency changes from zero to infin-
ity, the Mikhailov hodograph begins on the real axis at point an, sequentially passes counterclockwise n 
quadrants of the complex plane without passing through zero, and goes to infinity in the nth quadrant, the 
system is stable. In case of unstable systems, the curves do not cover the origin, while if the hodograph 
starts from the origin or passes through the origin, the system is on the stability boundary.

To assess the stability of the control system by the Mikhailov method, it is necessary to determine the 
characteristic polynomial of the control system, described by the system of equations (8), (10). As this 
system is nonlinear, the first thing that is required is to linearize this system of equations in some vicinity 
of the equilibrium point, which is done below.

 

2

11 12 13 11 1 3 22

12 1 3 13 1 1

2

21 22 23 21 2 3 22

(1 )( ) cos( )

( ) cos( ) 0,

[ (1 )( ) sin( ) ]

[

v

v

jT
p

p p p

jT
p

d x dx dy dz
m h h h x c e h t

dt dt dtdt

y c S h c z Q t S

d y dx dy dz
m h h h x c e h t

dt dt dtdt

y c

− ω

− ω

 + + + + + χ − ρ + ρµ + ϕ σ α + 

+ + χ ρ + ρµ + ϕ σ + + χ ρµα =  

+ + + + + χ − ρ + ρµ + φ σ α +

+ 22 2 3 23 2 1

2

31 32 33 31 3 0 3 22

32 3 0 3 33 3 1 1 2 3

( ) sin( ) ] 0,

(1 )( ) ( )

( ) ( ) ( ) 0,
2

(

v

p p p

jT
t t p

t
p t t p p f f p

S h c z Q t S

d z dx dy dz
m h h h x c e k k h t

dt dt dtdt

k
y c S k k h c z Q t S t h

T

− ω

+ χ ρ + ρµ + φ σ + + χ ρµα =

 + + + + + χ − ρ + ρµ + + ∆ σ α + 

∆ + + χ ρ + ρµ + + ∆ σ + + χ ρµα + α − α σ =      
2

1 2 1 2 0 3 0 0 32

1 3 1 0 3

3 0 0 3 2 0

3 1 0 3 2

) ( ) ( ) ( )

( ) ( )

(1 )( ) ( )

(1 )( ) ( )

v

v

v

p p t t p

jT
p p t t p

jT
c t t p c

jT
c t t

d Q dQ dz
T T T k t S k k k h t

dt dtdt

dz
k t S k k k h t e

dt

x e V k k k h t V k

x e V k k k h t

− ω

− ω

− ω

+ + + χ ρ + ρµ + + ∆ σ +  

+ χ ρ + ρµ + + ∆ σ +  

 + χ − ρ + ρµ + + ∆ σ α + 

+ χ − ρ + ρµ + + ∆ σ α 1

3 0 3 3 1 0 1 3

3 1 1 2 3

3 1 1 1 2 3 1

( ) ( ) ( ) ( )

1 ( )
2

( ) 0,
2

v

v

v

jT
p c

jT
p c t t c p c t t c

t
p p c f f p c

jT t
p p c f f p c

V k e

y S kV k k kV h y S k V k k k V h e

k
Q t S kV t h kV

k
Qe t S k V t h k V

− ω

− ω

− ω








  + 

+ χ ρ + ρµ + + ∆ σ + χ ρ + ρµ + + ∆ σ +      

∆ + + χ ρµα + α − α σ +  

∆ + χ ρµα + α − α σ =  





































 (12)



OBRABOTKA METALLOV

Vol. 25 No. 1 2023

TEchNOLOgy

The system (12) vjTe− ω  is like a lagging argument, where vT  is the revolution period of the workpiece. 
For the subsequent analysis of the control system, let’s move on to the operator form of the system (12), it 
means, let’s implement the Laplace transform, assuming that the initial conditions are zero (p = d/dt), the 
following formulas are obtained.
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2
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


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

∆ + χ ρµα + α − α σ =   

 (13)

It is convenient to consider the system (13) in matrix-vector form:

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

( )

( )
0,

( )

( )

a a a a x p

a a a a y p

a a a a z p

a a a a Q p

   
   
    =   
        

 (14)



OBRABOTKA METALLOV TEchnOLOgy

Vol. 25 no. 1 2023

where the coefficients have the following values:

 

2
11 11 11 1 3 2

12 12 12 1 3

13 13 13

14 1 1

21 21 21 2 3 2

2
22 22 22 2 3
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+
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









































 + + ∆ σ  


∆  = + + + + χ ρµα + α − α σ +   
 ∆ + χ ρµα + α − α σ   

 (15)

Subsequently, it is necessary to move to the time domain by replacing p = jω, and the characteristic 
polynomial of the control system is nothing more than the determinant of the matrix A presented in  
equation (14).

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

( ) det( ) .

a a a a

a a a a
D j A

a a a a

a a a a

ω = =  (16)

Thus, the equation (16) is the characteristic polynomial of the control system that needs to be researched 
for behavior on the complex plane when the frequency of ω changes from zero to infinity.
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Simulation results and discussion of the first hypothesis

For the convenience of representing the behavior of the system, simulation was carried out in the 
Matlab/Simulink 2014 package, where a nonlinear system (8), (10) was directly modeled in Simulink, and 
the characteristic polynomial (16) was calculated by a cycle in Matlab itself, where at every step of the 
cycle a determinant for a specific frequency value was considered, and the resulting value was deposited on 
the complex plane, then everything was repeated. In general, the value for ω was calculated from zero to 
2,000 Hz in increments of 0.01 Hz.

To assess the stability of the cutting control system by the Mikhailov method, the variants of the control 
system, the variant of a stable and the variant of an unstable (at the boundary of stability) system were 
considered. The factor affecting the stability of the cutting process was a tool wear along the flank; the 
second factor is the processing speed factor. Here there is a possibility of checking the A.D. Makarov 
statement. In total, 29 high-speed cutting modes were considered, in each of which a stable, unstable and at 
the boundary of stability cutting mode was studied.

Let’s consider the set of parameters of the cutting control system, which includes a processing speed of 
1,600 rpm and a wear value of 0.22 mm. The results of modeling the coordinates of the system state and the 
corresponding phase directions are presented in Figure 2.
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Fig. 2. For the case of wear h = 0.22: 
a – deformations along the x coordinate; b – deformations along the y coordinate; c – deformations along the z coordinate; d – 
phase trajectory along the x coordinate; e – phase trajectory along the y coordinate; f – phase trajectory along the z coordinate

As can be seen from Figure 2, the system is stable, in addition, it can be seen from the phase trajectories 
that there is a constant restructuring of the control system, where the phase trajectory is compressed. 
However, each cycle of adjustment and subsequent compression is associated with cutting along the “trace” 
that was formed when the tool was embedded on the first turn.

The stability assessment according to the Mikhailov criterion, for the considered variant of the parameters 
of the cutting control system, is shown in Figure 3.
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The Mikhailov vector hodograph, shown in Figure 3, confirms the conclusion about the stability of 
the cutting control system, which is made by analyzing the coordinates of the deformation motions of the 
tool tip earlier. A feature of the Mikhailov vector hodograph is a constant increase in the amplitude of the 
hodograph with the increase in the frequency of modeling, therefore, the description of the hodograph 
has to be done in two figures, in the first one we see the movement of the hodograph through the first five 
quadrants, and in the second the hodograph covers the point zero through three more quadrants.

The stability limit for the case of processing at a speed of 1,600 rpm, occurs at a wear value of  
0.473 mm, the results of modeling the Mikhailov vector hodograph for this variant of modeling the cutting 
control system are shown in Figure 4.

Fig. 3. The hodograph of the Mikhailov vector, a stable system: 
a – the beginning of the Mikhailov vector; b – the end of the Mikhailov vector

                           а                                                                        b

Fig. 4. The hodograph of the Mikhailov vector, the system on the boundary of stability: 
a – the beginning of the Mikhailov vector; b – the end of the Mikhailov vector

Re

Jm

Точка касания Re

Jm

                                       а                                                                                                 b
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T a b l e  1
The boundary of the cutting system stability

h3, mm 0.3 0.32 0.34 0.35 0.37 0.38 0.4 0.41 0.42 0.43

n, rev/m 300 340 400 440 500 600 660 700 760 820

h3, mm 0.436 0.44 0.445 0.4455 0.455 0.46 0.46 0.473 0.483 0.491

n, rev/m 880 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800

As it can be seen from Figure 4, the hodograph of the Mikhailov vector touches the imaginary axis and 
returns back to the first quarter, if this characteristic crosses the imaginary axis and returns back, it will 
be the mechanism for displaying the loss of stability of the system. Subsequently, with the increase in the 
amount of the cutting wedge wear, this is exactly what happens.

The results of all studies are summarized in one general table, which is given below.
Graphically, the area of stable dynamics of the cutting process, corresponding to the data given in  

Table 1, is shown in Figure 5.

n, rev/m

h, mm

The area of stable 
dynamics of the cutting 

system

The area of 
unstable dynamics 

of the cutting 
system

Fig. 5. Areas of stable and unstable behavior of the cutting system

As shown by Figure 5, the stability limit of the cutting system tends to grow indefinitely, while there is 
no pronounced maximum of this characteristic. In other words, the area of stable dynamics of the cutting 
system does not have a local extremum that would reflect the maximum dimensional stability of the tool 
corresponding to the statement, put forward by A.D. Makarov.

As the reason for such a strange behavior of the cutting control system, it can be indicated that the 
control system model given in this section does not actually include the structural adjustment of the force 
response, which is identified and described in [9]. To clarify this assumption, consider the variant of force 
responses at a cutting speed of 1,600 rpm, which are shown in Figure 6.
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As it can be seen from Figure 6, despite a significant change in the wear of the cutting wedge along 
the flank, the stationary components of the response forces to the forming motions have hardly changed. 
It is also clear from the figure that the relations between these forces do not change either, which clearly 
contradicts the assumption about the restructuring of response forces.

Thus, the first hypothesis put forward at the beginning of the paper cannot be used as an objective 
for the scientific position put forward by A.D. Makarov. In other words, the combination of factors: the 
incident characteristic of the cutting force (according to N.N. Zorev) and the minimum coefficient of friction 
associated with the transition of friction from adhesive to diffusion nature is not sufficient to ensure the 
optimality of the cutting system according to the statement of A.D. Makarov. First of all, this is due to the 
lack of adjustment of the force response on the part of the cutting process to the forming motions of the tool 
with the increase in the wear of the cutting wedge along the flank.

Testing the second hypothesis

Correction of the mathematical model of the cutting control system

Let’s consider the second statement put forward as an objective of the scientific position of A.D. Ma-
karov, it is important to note that it is necessary to supplement the mathematical model describing the re-
sponse of the cutting system to the forming motions of the tool with an additional element displaying the 
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t, s

t, s
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Fig. 6. Reaction forces for the option with a processing speed of 1,600 rpm: 
a – Fx for h = 0.22; b – Fy for h = 0.22; c – Fz for h = 0.22; d – Fx for h = 0.49; e – Fy for h = 0.49; f – Fz for h = 0.49
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dependence of the pushing force on the contact temperature of the tool and the workpiece. It is convenient 
to interpret this through the introduction of the dependence – the strength limit of the processed metal under 
compression on the corresponding contact temperature.

To determine this dependence, a series of experiments was carried out using the experimental setup 
STD.201-1, which involves adjusting the weighting coefficients to calculate the cutting temperature based 
on the values of the removed natural thermal EMF. The STD.201-1 installation was developed by American 
engineers to solve the problems of analyzing the dynamics of cutting processes on machines of the turning 
group. The setup allows measuring the forces and vibrations of the tool, spread out along the axes of 
deformation (see Figure 1), as well as the temperature in the cutting zone. The research methodology 
provides for a whole setup procedure, which includes a double measurement of the contact temperature, a 
measurement using a natural thermal EMF and measurements carried out next to the contact with a calibrated 
thermocouple. An example of connection for the case of measuring the effect of contact temperature on the 
expulsive force, for the case of Steel 45, is shown in Figure 7.

As can be seen from Figure 7, the measuring unit, in addition to the STD201-1 stand, contains a specially 
prepared shaft made of Steel 45, which has a radiator working area, heated by a special circular heater that 
is put on the shaft. In addition, a tool is brought to the shaft with some effort, next to the contact, which 
has a thermocouple inserted into the shaft material that measures the real value of the contact temperature.

The measurement results are presented by the system’s software interface, the appearance of which is 
shown in Figure 8.

As shown in Figure 8, the interface of the stand STD201-1 provides for the possibility of the measuring 
subsystem calibration based on the measurement of the natural thermal EMF of the cutting zone. It was the 
calibration mode of this measuring stand that was used for the experiment to determine the dependence of 
the expulsive force on the contact temperature of the tool and the workpiece.

Fig. 7. Experimental setup prepared to assess the effect of contact temperature on the expulsive 
force
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T a b l e  2
Dependence of Fy on the contact temperature

Q, °C 30 40 50 60 70 80 90 100 110 120 130

Fy, kgF 9.5 9.7 10.3 10.9 11.5 12.2 12.8 13.4 13.8 14.3 14.6

The results of experiments to assess the influence of the contact temperature on the value of the force 
pushing the tool out of the cutting zone, for the case of processing Steel 45, are shown in the table below 
(Table 2).

A graphical representation of the experiment results is shown in Figure 9.
As is shown in Figure 9, the expulsive force almost linearly depends on the contact temperature, which 

is quite understandable from the point of view of the linear nature of metals expansion with the increase 
in its temperature. The average coefficient of linear increase in the expulsive force with the increase in the 

contact temperature F
Qk , for the case of Steel 45, was 0.05625. 

Thus, the experiments carried out showed that the expulsive force linearly depends on the temperature 
of the workpiece, for Steel 45 the coefficient of amplification of the expulsive force was 0.05625.

Let’s imagine the dependence of the cutting force on the temperature-speed factor of cutting in the form 
of a falling exponential dependence of the coefficient ρ on the actual cutting speed, as it is presented in the 
figure below.

 
1

0 1
c

dz
V

dte
 −α − 
 

 
 ρ = ρ + µ  , (17)

Fig. 8. Interface of the stand STD201-1
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where 0ρ  – some minimum value of the coefficient ρ ; µ  – the coefficient showing the increase of the 

value ρ  to some maximum value; 1α  – the steepness coefficient of the value drop ρ ; c
dz

V
dt

 − 
 

 – instanta-

neous cutting speed. 
Taking into account expression (17), as well as relying on equation (1), the cutting force will be 

interpreted as:

 
1

0 1 ( )
c

v

dz tV
dt

p f
t T

dx
F e t y V dt

dt

 −α − 
 

−

 
  = ρ + µ − −    ∫ , (18)

where ( )pt y−  – instantaneous cutting depth, 
v

t

f
t T

dx
V dt

dt−

 − 
 ∫  – real feed.

Based on the feed transformation presented in the equation (18), we obtain the equation for calculating 
the feed in the following form:

 [ ] 0( ) ( ) (1 )v

v

t
jT

f f v v
t T

dx
V dt V T x t x t T S x e

dt
− ω

−

 − = − − − = − − 
 ∫ , (19)

where 0S  – the technological feed set by the CNC program, а (1 )vjTx e− ω−  – the deformation motion of 
the cutting tool along the feed axis transformed through the delay link.

Equation (18), taking into account (19), will describe the cutting force, which after the linearization 
procedure in the vicinity of the equilibrium point, will take the following value:

 0 0 0 0 1 0(1 )c v cV jT V
p p

dz
F y S x e t t S

dt
− ω= − ρ − − ρ + ρ µα , (20)

where ( )0 0 11 (1 )cV
cVρ = ρ + µ − α .
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Fig. 9. Results of the experiment on Steel 45
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Let’s consider, in the light of the conducted field experiments, the component of the force that depends 
on the wear of the tool along the flank, described in the previous section of the paper in the equation (2), 
which, taking into account the revealed linear dependence, can be conveniently considered as:

 0 3( ) ( ) hK xF
h Q h pF k Q h t y e−= σ + − , (21)

where 0σ  – the ultimate strength of the processed metal under compression in [kg/mm2], at the contact 
temperature along the tool flank hQ  and the workpiece at zero degrees.

The linearized value of the force along the flank in the vicinity of the equilibrium point will have the 
following form:

 0 3 0 3 3
h

h h p h Q pF xK h t y h Q k h t= − σ − σ + . (22)

In the description of the cutting force along z coordinate, there is a coefficient of friction described by 
the equation (5), a linearized version of this coefficient is given below:

 0 1 2(1 ) / 2 (1 ) / 2t t t f h t f hk k k K Q k K Q= + ∆ − + ∆ + . (23)

Taking into account (22 and (23), the linearized value ( )z
hF in the vicinity of the equilibrium point will 

take the form:

0 3 0 0 3 0( ) ( )z
h h p t t t tF xK h t k k y h k k= − σ + ∆ − σ + ∆ +

 3 0 2 1 0 3( ) ( )h
h Q p t t f f t pQ k h t k k K K k h t + + ∆ + − ∆ σ  . (24)

The contact temperature of the tool flank and the workpiece is defined as the solution of the following 
differential equation:

 
2

1 2 1 22
( ) ( )h h

h
d Q dQ

T T T T Q kN t T
dtdt

+ + + = − , (25)

where 
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The equation (26) will take the form:
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3
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The linearized value of irreversible transformations power in the vicinity of the equilibrium point will 
take the form:

3 0 0 3 0 3 0 1 0

0 3 0 0 3 0
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dz
N t T y e S V x e e t V e t S V
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3 0 2 1 0 3( ) ( ) vjTh
h Q p t t f f t pQ k h t k k K K k h t e V− ω + + ∆ + − ∆ σ −  ñ

 3 0 0 0 3 0( ) .c vV jT
p t t

dz
S h t k k e

dt
− ω − χ ρ + σ + ∆   (28)

The general system of equations describing the dynamics of the cutting system is given below.
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 (29)

The same system, but already in a linearized form, in the vicinity of the equilibrium point and after 
switching to the operator form of recording, will take the following form:
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 (30)

where p – the Laplace transform operator, which is equal to d
p

dt
=  under zero initial conditions

The system (30) in matrix-vector form is given below:
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 (31)

where the coefficients of the matrix are:
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ija , i = 1...4, j = 1…4, are represented by the following expressions:
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Similarly to the reasoning of the previous section, in the future it is necessary to move to the time 
domain by replacing p = jω, and the characteristic polynomial of the control system is nothing more than 
the determinant of the matrix A, what is seen in the following equation:
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 (34)

Thus, the expression (34) is a Mikhailov vector that should be followed for behavior on the complex 
plane when the frequency ω changes from zero to infinity.
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Modeling results and discussion of the second hypothesis

For an adequate comparison of the experimental results in the previous section and the convenience of 
representing the system character, the simulation was carried out similarly to the previous version in the 
Matlab/Simulink 2014 package, where the system (29) was directly modeled in Simulink; and the Mikhailov 
vector (34) was calculated by a cycle in Matlab itself, where at every step of the cycle the determinant 
D(jω) for a specific frequency value ω was calculated and the resulting value was plotted along the complex 
plane, then everything was repeated. The simulation results for the case of processing with a cutting speed 
900 rev/min are shown below.

Let’s consider the dynamics of a nonlinear cutting system at a cutting speed 900 rev/min and  
h = 0.24 mm, a graph of the coordinates of the deformation motion of the tool tip and the corresponding 
phase trajectories are shown in Figure 10.

Fig. 10. For the case of wear h = 0.24: 
a – deformations along the x coordinate; b – deformations along the y coordinate; c – deformations along 
the z coordinate; d – phase trajectory along the x coordinate; e – phase trajectory along the y coordinate;  

f – phase trajectory along the z coordinate
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The dynamics of the cutting process reflected in Figure 10 shows a steady cutting process, which is 
associated with minimizing the vibration activity of the tool. The stability margin can be estimated from 
the starting point of the Mikhailov vector hodograph on the complex plane, which is shown in Figure 11.

As it can be seen from Figure 11, the stability margin depends on the distance of the hodograph curve 
beginning from the origin of the complex plane coordinates. The second part of the hodograph is not 

a

b

c

d

e

f



OBRABOTKA METALLOV

Vol. 25 No. 1 2023

TEchNOLOgy

informative, as the loss of stability is displayed at the beginning of the hodograph; from these considerations, 
in the future, the second part (the end of the hodograph) will not be given. 

Let’s consider the analysis of the cutting control system stability at 0.36 mm wear, the results of modeling 
the Mikhailov vector hodograph are shown in Figure 12.

As shown by Figure 12, the beginning of the Mikhailov vector hodograph is still far from the origin of 
coordinates, but here the regenerative effect is clearly manifested, which in the linearized system of equa-
tions is described by the delay operator vjTe ω− . The influence of this operator, in the initial section, becomes 
more significant with the increasing cutting speed, which leads to the increase in the fluctuations of the 
Mikhailov vector hodograph in the initial segment of the characteristic. As a result of such a change in the 
characteristics of the Mikhailov vector hodograph, the loss of stability may be associated with the entry 
of the Mikhailov vector hodograph into the second quadrant and subsequent return to the first quadrant. 
The point, where the hodograph is closest to the second quadrant (the convergence point on the graph) 
will determine the stability margin of the cutting system. As is clear from Figure 12, the hodograph of the 
Mikhailov vector leaves the first quadrant by cutting due to the influence of the delay operator on it. Let’s 
consider this point more closely in Figure 12 on the right, from where it can be seen that the mechanism of 
reflection of the stability loss in the cutting system on the Mikhailov vector hodograph is associated with the 
intersection of the imaginary axis by the hodograph in the direction of the second quadrant of the complex 
plane. Such a change in the behavior of the hodograph is associated with the increase in the effect of the 
cutting system self-excitation, which in the English-language scientific literature, is commonly called the 
regenerative effect.

For the further analysis of the cutting control system, we will form into one table all the data obtained 
in previous parts of work on the upper limit of the stability of the cutting control system according to the 
Mikhailov criterion (see Table 3).

Table 3 shows that the maximum of the stability area of the cutting control system, in the space of the 
parameters of the cutting speed and the amount of the cutting wedge wear, is observed at a cutting speed 
of 1,620 rev/min. At this point, the amount of wear, allowed with regard to ensuring the stability of the 
machining process, was 0.47 mm, which is significantly higher than the average value for the sample, 
which was h ≈ 0.39 mm.

                                               a                                                                                               b
Fig. 11. The hodograph of the Mikhailov vector, a system with h = 0.24: 
a – the beginning of the Mikhailov vector; b – the end of the Mikhailov vector
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                                     a                                                                                                b
Fig. 12. The Mikhailov vector hodograph, a system with h = 0.36: 

a – the beginning of the Mikhailov vector; b – the enlarged beginning of the Mikhailov vector hodograph

T a b l e  3

The boundary of the cutting system stability

h3 (mm) 0.3 0.31 0.32 0.33 0.335 0.342 0.351 0.36 0.375 0.386

n (rev/min) 360 460 660 760 820 900 1.000 1.100 1.200 1.300

h3 (mm) 0.397 0.41 0.43 0.46 0.47 0.44 0.43 0.42 0.418 0.41

n (rev/min) 1.400 1.500 1.560 1.600 1.620 1.680 1.700 1.750 1.800 1.900

Graphically, the interpretation of the data given in Table 3 is shown in Figure 13.
From Figure 13 it will be obvious that the area of stable dynamics of the cutting system definitely 

has a pronounced local maximum at a cutting speed of 1,620 rev/min. It should be noted that the studies 
conducted in the previous section did not give such a strong maximum (see Figure 5).

To verify the proposed assumption about the significant influence of the force response transformation 
from the cutting process on the forming motion of the tool, we consider the forces at the same processing 
speeds as in the previous case.

As it can be seen from Figure 14, with the increase in the wear of the cutting wedge of the tool, there is 
a significant restructuring of the force response of the cutting system, the Fx component increases by 5 %, 
the Fy component increases by 32 %, and Fz by 14 %. 

Thus, the studies have shown that the increase in the pushing force, with the inevitable increase in the 
processing speed and the increase in the contact temperature, leads to a restructuring of the force response 
and a limitation of the stability area of the cutting system to the right of the local minimum.
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Fig. 13. Areas of stable and unstable behavior  
of the cutting system
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Fig. 14. Response forces for the option with a processing speed of 1,600 rpm: 
a – Fx for h = 0.11; b – Fy for h = 0.11; c – Fz for h = 0.11; d – Fx for h = 0.41; e – Fy for h = 0.41;  

f – Fz for h = 0.41

Conclusions

The studies have shown that the first hypothesis put forward in the paper does not adequately reflect the position 
of A.D. Makarov about the existence of some optimal processing mode, but the second hypothesis generally confirms 
this position. Indeed, the optimal value of the cutting speed (cutting temperature), when modeling the dynamics of 
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the cutting process, is determined by a combination of the following factors: the incident characteristics of the cutting 
force (according to N.N. Zorev), the minimum coefficient of friction caused by the transition of friction from adhesive 
to diffusion nature and the dependence of the force pushing the tool from the preheated processing zone. However, 
it should be added here that another important factor determining the optimality of the cutting process according to 
A.D. Makarov is the regenerative effect inherent in the model of the cutting control system, which has a significant 
impact on the stability of the cutting system dynamics.

All this together allows us to formulate the following scientific position: the most optimal, with regard 
to a cutting speed (cutting temperature), will be the mode in which the incident characteristic of the cutting 
force (according to N.N. Zorev) reaches its minimum value, the coefficient of friction on the tool flank 
will be in the vicinity of the point of the local minimum, pushing the tool force will not exceed a certain 
pre-known value and, at the same time, the value of the cutting speed should be in the vicinity of a certain 
minimum of self-excitation of the cutting system during the regeneration of vibrations due to cutting along 
the “trace”. 

From a practical point of view, the conducted research shows the possibility of introducing new 
measuring and computing subsystems that, based on a synthesized mathematical model, can determine the 
most optimal cutting modes in real time.
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