Quartic corrections in energy potentials of hemitropic micropolar solids
- Authors: Murashkin E.V.1, Radayev Y.N.1
-
Affiliations:
- Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
- Issue: Vol 29, No 3 (2025)
- Pages: 472-485
- Section: Mechanics of Solids
- URL: https://ogarev-online.ru/1991-8615/article/view/349683
- ID: 349683
Cite item
Full Text
Abstract
The present study is devoted to employing the theory of algebraic invariants for deriving an approximation of the potential of force and couple stresses of the fourth degree for a nonlinear hemitropic micropolar elastic solid. The complete set of irreducible invariants for a system of two asymmetric second-rank tensors in the form of invariant traces is studied using the theory of integer rational algebraic invariants (semi-invariants).
As a result, a set of 86 invariant traces is obtained. This set comprises 8 individual invariants, 17 doublets, 44 triplets, and 17 quadruplets. From these 86 elements, 39 invariants were selected according to the rule of increasing algebraic degrees: 2 linear invariants, 6 quadratic, 12 cubic, and 19 quartic. The 39 fourth-degree invariants are divided into four groups based on the following rules: products of linear invariants with each other, products of quadratic invariants with each other, products of linear and quadratic invariants, pairwise products of linear and cubic invariants, and proper fourth-degree invariants.
The potential of force and couple stresses of a hemitropic micropolar elastic solid is constructed, containing quadratic, cubic, and quartic algebraic terms. Thus, the micropolar potential contains a total of 124 constitutive modules. Formulas for calculating all 39 invariants in mixed tensor components are provided. As a result, 87 quartic corrections to the cubic potential of force and couple stresses of a nonlinear hemitropic micropolar elastic solid are obtained.
Full Text
##article.viewOnOriginalSite##About the authors
Evgenii V. Murashkin
Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Author for correspondence.
Email: murashkin@ipmnet.ru
ORCID iD: 0000-0002-3267-4742
SPIN-code: 4022-4305
Scopus Author ID: 12760003400
ResearcherId: F-4192-2014
https://www.mathnet.ru/rus/person53045
Cand. Phys. & Math. Sci., PhD, MD; Senior Researcher; Lab. of Modeling in Solid Mechanics
Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1Yuri N. Radayev
Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Email: radayev@ipmnet.ru
ORCID iD: 0000-0002-0866-2151
SPIN-code: 5886-9203
Scopus Author ID: 6602740688
ResearcherId: J-8505-2019
https://www.mathnet.ru/rus/person39479
D.Sc. (Phys. & Math. Sci.), Ph.D., M.Sc., Professor; Leading Researcher; Lab. of Modeling in Solid Mechanics
Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1References
- Spencer A. J. M., Rivlin R. S. Isotropic integrity bases for vectors and second-order tensors. Part I, Arch. Ration. Mech. Anal., 1962, vol. 9, pp. 45–63. DOI: https://doi.org/10.1007/BF00253332.
- Spencer A. J. M. Isotropic integrity bases for vectors and second-order tensors. Part II, Arch. Ration. Mech. Anal., 1965, vol. 18, pp. 51–82. DOI: https://doi.org/10.1007/BF00253982.
- Smith G. F. On isotropic integrity bases, Arch. Ration. Mech. Anal., 1965, vol. 18, pp. 282–292. DOI: https://doi.org/10.1007/BF00251667.
- Gurevich G. B. Foundations of the Theory of Algebraic Invariants. Groningen, The Netherlands, P. Noordhoff, 1964, viii+429 pp.
- Spencer A. J. M. Theory of invariants, In: Continuum Physics, vol. 1. New York, Academic Press, 1971, pp. 240–353. DOI: https://doi.org/10.1016/B978-0-12-240801-4.50008-X.
- Sushkevich A. K. Osnovy vysshei algebry [Fundamentals of Higher Algebra]. Moscow, ONTI, 1937, 476 pp. (In Russian)
- Zhilin P. A. Ratsional’naya mekhanika sploshnykh sred [Rational Continuum Mechanics Media]. St. Petersburg, Polytechn. Univ., 2012, 584 pp. (In Russian)
- Cosserat E., Cosserat F. Théorie des corps déformables. Paris, Herman et Fils, 1909, vi+226 pp.
- Kessel S. Lineare Elastizitätstheorie des anisotropen Cosserat-Kontinuums, Abh. Braunschw. Wiss. Ges., 1964, vol. 16, pp. 1–22. DOI: https://doi.org/10.24355/dbbs.084-201301181342-0.
- Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua, In: Applied Mechanics; eds. H. Görtler. Berlin, Heidelberg, Springer, 1966, pp. 153–158. DOI: https://doi.org/10.1007/978-3-662-29364-5_16.
- Nowacki W. Theory of Micropolar Elasticity, Course held at the Department for Mechanics of Deformable Bodies, July 1970, Udine, International Centre for Mechanical Sciences. Courses and Lectures, vol. 25. Wien, New York, Springer, 1972, 286 pp. DOI: https://doi.org/10.1007/978-3-7091-2720-9.
- Günther W. Zur Statik und Kinematik des Cosseratschen Kontinuums, Abh. Braunschw. Wiss. Ges., 1958, vol. 10, pp. 195–213.
- Neuber H. On the effect of stress concentration in Cosserat continua, In: Mechanics of Generalized Continua; eds. E. Kröner. Berlin, Heidelberg, Springer, 1968, pp. 109–113. DOI: https://doi.org/10.1007/978-3-662-30257-6_13.
- Dyszlewicz J. Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, vol. 15. Berlin, Springer, 2004, xv+356 pp. DOI: https://doi.org/10.1007/978-3-540-45286-7.
- Besdo D. Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums, Acta Mech., 1974, vol. 20, no. 1, pp. 105–131. DOI: https://doi.org/10.1007/BF01374965.
- Nowacki W. Theory of Asymmetric Elasticity. Oxford, Pergamon Press, 1986, viii+383 pp.
- Radayev Yu. N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 3, pp. 504–517 (In Russian). EDN: YOYJQD. DOI: https://doi.org/10.14498/vsgtu1635.
- Radayev Yu. N., Murashkin E. V. Pseudotensor formulation of the mechanics of hemitropic micropolar media, Problems of Strength and Plasticity, 2020, vol. 82, no. 4, pp. 399–412 (In Russian). EDN: TODIFV. DOI: https://doi.org/10.32326/1814-9146-2020-82-4-399-412.
- Murashkin E. V., Radayev Yu. N. Reducing natural forms of hemitropic energy potentials to conventional ones, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 4, pp. 108–115 (In Russian). EDN: DTZTJY. DOI: https://doi.org/10.37972/chgpu.2022.54.4.009.
- Murashkin E. V., Radayev Yu. N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 3, pp. 86–100 (In Russian). EDN: YOEHQV. DOI: https://doi.org/10.37972/chgpu.2022.53.3.010.
- Murashkin E. V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1, pp. 110–121 (In Russian). EDN: JXXIAX. DOI: https://doi.org/10.37972/chgpu.2023.55.1.012.
- Murashkin E. V., Radayev Y. N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity, Lobachevskii J. Math., 2023, vol. 44, no. 6, pp. 2440–2449. EDN: PINYDI. DOI: https://doi.org/10.1134/S1995080223060392.
- Murashkin E. V., Radayev Yu. N. Theory of Poisson’s ratio for a thermoelastic micropolar acentric isotropic solid, Lobachevskii J. Math., 2024, vol. 45, no. 5, pp. 2378–2390. EDN: ASGCQB. DOI: https://doi.org/10.1134/S1995080224602480.
- Murashkin E. V., Radayev Y. N. Cubic approximation of stress potential for a hemitropic micropolar elastic solid, Lobachevskii J. Math., 2025, vol. 46, no. 5, pp. 2391–2400. DOI: https://doi.org/10.1134/S1995080225606514.
- Murashkin E. V., Radayev Yu. N. On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2025, vol. 29, no. 2, pp. 274–293 (In Russian). EDN: DZUMDJ. DOI: https://doi.org/https://doi.org/10.14498/vsgtu2144.
- Rozenfel’d B. A. Mnogomernye prostranstva [Multidimensional Spaces]. Moscow, Nauka, 1966, 648 pp. (In Russian)
Supplementary files

